b
RN
RELY,

AD-A223 738

FLE COPY < -
NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

GRAPHIC INTERFACE FOR ATTRIBUTE-BASED
DATA LANGUAGE QUERIES FROM A
PERSONAL COMPUTER TO
A MULTI-LINGUAL, MULTI-MODEL,
MULTI-BACKEND DATABASE SYSTEM OVER
AN ETHERNET NETWORK

by
William Goebel Anthony Sympson I1I

December 1989

Thesis Advisor; C. Thomas Wu

Approved for public release; distribution is unlimited

90 07 5 08k

DTIC

ELECTE
JULO 6 1998

Unclassified

Sealrig Classification of this page

REPORT DOCUMENTATION PAGE

1a Report Security Classification UNCLASSIFIED b Restrictive Markings

2a_Security Classification Authority 3 Distribution Availability of Report

2 Declassification/Downgrading Schedule Approved for public release; distribution is unlimited.

4 Performing Organization Report Number(s) S Monitoring Organization Report Number(s)

6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization

Naval Postgraduate School (If Applicable) 52 Naval Postgraduate School

6c Address (city, state, and ZIP code) 7 Address (city, state, and ZIP code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a Name of Funding/Sponsoring Organization |8b Office Symbol 9 Procurement Instrument Identification Number
(If Applicable)

8 Address (city, state, and ZIP code) 10 Source of Funding Numbers

11 Tite (Include Security Classification) GRAPHIC INTERFACE A : A LA
QUERIES FROM A PERSONAL COMPUTER TO THE MULTI-LINGUAL, MULTI-MODEL, MULTI-
BACKEND DATABASE SYSTEM OVER AN ETHERNET NETWORK

12 Personal Author(s) Sympson I, William G. A.

13a Type of Report 13b Time Covered 14 Date of Report (year, month.day) 15 Page Count
Master's Thesis Tme To . 11989 December 128

16 Supplementary Nowtion The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

17 Cosati Codes 18 Subject Terms (continue on reverse if necessary and identify by block number)

Field | Group Subgroup object-oriented language, graphical interface, database language

19 Abstract (continue on reverse if necessary and identify by block number

This research is aimed at taking one step closer to the goal of the "paperless ship". This thesis examined the
feasibility of providing a visual interface to allow queries from a front end Personal Computer (PC) using the
Attribute-Based Data Language (ABDL) to a Multi-lingual, Multi-model, Multi-backend mini-computer Providing
an improved Human-Machine Interface for the system will greatly increase its usability. A prototype was
implemented in the Graphics LAnguage for Database (GLAD) on a Zenith 248 as the front end connected to a ISI
mini-computer running the Multi-Lingual, Multi-Model, Multi-Backend Database System (MBDS), a backend of
the future. The Zenith 248 was chosen as the front end because of the large quantity of these computers
throughout the Navy. GLAD was used because it is a graphics object-oriented environment for databases that
gives the user access to both data manipulation and program development through visual interaction. This creates
a user friendly windowing environment both for development and for operational applications. Looking towards
the future, MBDS is the perfect backend as it is the latest in Database management systems. This thesis provided
an extension to GLAD to demonstrate the ability to send Attribute-Based Data Language to Multi-Backend
Database System .

2 Distribution/Availability of Abstract 21 Abstract Security Classification
unclassified/unlimited D same as repont D DTIC users Unclassified
22a Name of Responsible Individual — 22b Telephone (Include Area code) 22¢ Office Symbol

Professor C. Thomas Wu (408) 646-3391 Code 52 Wq
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted secunty classification of this page

All other editions are obsolete Unclassified

Approved for public release; distribution is unlimited.

Graphic Interface for Attribute-Based Data Language Queries
from a Personal Computer to the Multi-Lingual, Multi-Model,
Multi-Backend Database System Over an Ethernet Network

by

William Goebel Anthony Sympson III
Lieutenant, United States Navy
B.S.S.E., United States Naval Academy, 1984

Submitted in partial fulfillment of the requirements for
the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
December 1989

Author: //(ﬂ/&m & A J?%jdm

"~ William Goebel Anth6ny Sympson III
Approved by: m
C./ﬁoﬁ\as Wu, Thesis Advisor
(o [Asr

David K. Hsiao, cond Reader
%; SMC

Robert B. McGhee, Chairman, Department of Computer Science

ii

»

ABSTRACT ,
/ 1

=~ This research is aimed at taking one step closer to the goal of the /'papcrless

I~

queries from a front end Personal Computer (PC) using the Attribute-Based Data
Language (ABDL) to a Multi-lingual, Multi-model, Multi-backend mini-computer

This thesis examined the feasibility of providing a visual interface to allow

Providing an improved Human-Machine Interface for the system will greatly increase its
usability. A prototype was implemented in the Graphics LAnguage for Database
(GLAD) on a Zenith 248 as the front end connected to a ISI mini-computer running the
Multi-Lingual, Multi-Model, Multi-Backend Database System (MBDS), a backend of
the future. The Zenith 248 was chosen as the front end because of the large quantity of
these computers throughout the Navy. GLAD was used because it is a graphics
object-oriented environment for databases that gives the user access to both data
manipulation and program development through visual interaction. This creates a user
friendly windowing environment both for development and for operational applications.
Looking towards the future, MBDS is the perfect backend as it is the latest in Database
management systems. This thesis provided an extension to GLAD to demonstrate thg

ability to send Attribute-Based Data Language to Multi-Backend Database System . ' -

Acoession Por
NTIS GRAXI ?

DTIC TAB
Unannounced O
Justiflcation__
By..

| Distributiony

| Awg} labi} ii;‘Codn
MAvall and/or
Dist Speatal)

i 04

TABLE OF CONTENTS
I. INTRODUCTION......ccoiiiiiirrensassncsrissestessssessisssssssassessssssossessssssssssnssnssssssansssnes 1
A. BACKGROUND.......ccciviimmieesnsaisisssnstisssssisassssssssnssssossosssssssessassssassassnsasssases 1
B. THE NEED FOR RESEARCH........ccceinniinninisinnisnisissisnssnssssssansssssesss 2
C. THESIS ORGANIZATION.......ccvctvimrtnrensenssnssissssnnssnessssssssisstsassssssasssssssssssanes 3
. OBIJECT-ORIENT PROGRAMMING AND THE ACTOR ENVIRONMENT..... 5
A. OBJECT-ORIENTED PROGRAMMING (OOP).........ccocevmrrirncncrrerensenses 5
1. INTOUCHON. ...ttt eeesest et ae st sasserbe s srae s anesas S
2. Fundamental concepts of Object-Oriented Language.........ccccocoevernnennens 6
A, ODJECLS..ceiiiiirrreecieerereeessneeessreeseesssseeesssessesaaseestesssanasssseasannneesenn 6
D, ClaSSES...uiiiiiiiieiiiitrc e 6
C. MESSAGES. .. ittt creccnnreee e e s steae e s s s s s ana e s e s ana s snns 7
3. Inheritance, Polymorphism and Encapsulation............ccoecevvniininicecninnn 8
2. INhErtanCe......ccooiiiiiiiiiiiiie e 8
b. Polymorphism.......cccoveiiiiiiiiiiciiiire et 9
C. EnCapsulation.........ccccicciciniiinninnnininnereeceienseiteessesseeeessennsees 10
4. Object-Oriented Programming Summary..........ccoeeveinieineenenncenennnene. 10
B. ACTOR ENVIRONMENT........cccccvntmiininiincentntteinnnescesensesnsacess oo 11
1. Microsoft WINdows.......c.ccviiiiinccinininnnieninnee s 11
a. MS-Windows requirements...........cecvevveecernieneiimnnninenennuessesseennes 12
b. Sample WINdOW......ccooieiniiiinneninniieniesiee e 13
€. Dialog BOX....oiiiveeeireicireriinccieeirctneesese et 14
P2 N v () OO OO P OO O PR OPROPRORR 15

iv

8. ACIOr TEQUITEIMENLS......cceeteiseesscssassnssessaronsssessosssassassassssasaasaasanes 17

D, Starting ACEOL.......cccceiinenuiiinnnssenssnsiessesscsassncssessasssessisncsssossssaosase 17

C. Workspace WIndOW.......cccccvesrrininsssissnsssaessncsssssssssssesssssssesssssses 17

d. Browser WindoW.......ccceeuevininnicininiennncnsnsansnisscsseesessessasessssssses 18

e. The Inspector and Debug WIndows........c.ccceecreeccciirecnsuconaecrancenee 19

C. SUMMARYuciirrnninsiniinisnniisissnississsisseissiossisssosssesssssessssasssssassnsasasssss 20
HI. BACKEND DATA SYSTEM AND SOCKET INTERFACE.............ccocvvueruenueen 21
A. BACKEND DATA SYSTEM......cccoccrnnniinricnensinnnennessessessessesssssesssasassasses 21
1. Database Management System DBMS..........cccoiininiincnnnnininninnnennens 21

a. Multi-Lingual Database System........cooeceecuercevnnrnnninncniiescnseceeens 21

b. Multi-Model Database System.........c.ccocvivvrmirniininniiinintrnnennseness 24

c. Multi-Backend Database System.........ccocceevvrrnecerenerceenrecnennann 25

2. The Data Model and Data Language........cccccceervrrvunnneeenceenneeenieessneeenes 27

a. The Attribute-Based Data Model........c..cccceevviivvniniiinnninnicennn 27

b. The Attribute-Based Data Language........cccccccceeuvieinnniiinnnennnnnen. 28

B. THE SOCKET INTERFACE..........cccccvinnintiiinnnininincrerense st eseecnene 30
1. Socket Interface between MBDS and GLAD...........cccoecvrvirnvcncnnunnnen. 30

a. The MBDS Socket Interface........ccocoevvenerecinninncnnincnniocnnennennee 31

b. The GLAD Socket Interface.........ccccovvvnirnnnnriinnniinninenncnnnenn. 34

IV. IMPLEMENTATION........ioiitititinniniiiinenin et ssssns st ssessssssens 36
A. GRAPHICS LANGUAGE FOR DATABASE..........cccccccvmmninnninininnenns 36
1. Background..........cccviiiniinmiiniini 36

2. Hardware and Software requirements..........ccccoeceveniniinnnnniinnnieiennn 36

B. MODIFICATIONS. ...ttt st sbesse s sasenees 38

1. Resource File........ccccereroranessseessene . .38

2. DMWINdow Class.......ccovnnimnisnisisscsssissssisesassescesseesseeresssssosssasssess 40

C. IMPROVEMENTS........cooiiintreniininnscssessiensssssassatsstssssssssasssssssssasasansonsons 4]

1. QueryWiIndow Class......covicnimnenirernnassssessussssnesssnssssssiessessasesansssnesasans 41

8. Edilictieceens s sssessesssssses 42

D, QUETY.ciiiiiinirntncnttiinensntssesssensssssssssssssesstsssssessesssssesansassansnsense 43

C. Templates.......cociiiinniiiinicninninnitnnrnessreasssesseesesssssassseessens 45

A, DESCIIDE....ccoviiiitiiiiiiitinnrnnrsrent st et 46

€. Send QUETY.....cuiiiriiiirrrete ettt scere s esate s res e et e s e et e s e snna s reeeans 47

. HelP e e 49

B QUIb.ciiiictit et e s 49

D. Sample SesSiON....c.ccciiiiiiiiiiitirnrctnet et sre s 49

1. Starting Glad to receiving Results........ccocceevcerivenrrennninccniinennieniseenennee 49

a. GLAD Top-Level Window........ccccceveiviiiininncinnnniinieneneeneenees 50

b. Data Manipulation Window (DMWindow)........c.ccccceverrinrninnenen. 53

c. List Member Window.......ccccccoeivriiinnmnniinicnniiicniinceneeens 54

d. Display One Window........ccccecceeevernrenniinnienieeenienecsiiensesaeeeeenns 54

€. QUErYWINAOW....ccocoiiiiiiriiiiiinirieenireecteree st ete st e e s eessenesaes 55

IV. CONCLUSIONS.......ooititiiniiriitcsssnsntsinectssensssesssssssaesssssssnssssssss st svesns 59
A. AREVIEW OF THE RESEARCH...........ccccouecivinvnniinininiineccinesneaee 59

B. FUTURE ENHANCEMENTS........ccccccvimnnnnnnnnnnneenenenes 59

C. DISCUSSION AND BENEFITS OF THE RESEARCH...........c.cccovniiniinn 60
APPENDIX A - Actor.RC RESOURCE CODE LISTING.........ccoeeviniininiiiecniinnenns 62
APPENDIX B - DMWINDOW CLASS CODE LISTING........cccocvvinninnninrininiiene 84
APPENDIX C -QUERYWINDOW CLASS CODE LISTING.........cccccvvimvinvennannne 105

vi

LIST OF REFERENCES..........cccoceviiiivinrneniisesnssissssesessssesneansssssssessssssisessessssssssssseans 114
INITIAL DISTRIBUTION LIST.........cccconinininnnarnnsiinsessisnssisscssssussessnssessesasssssoses 116

vii

Figure 2.1

Figure 2.2

Figure 2.3
Figure 2.4
Figure 2.5

Figure 2.6
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11

Figure 4.12

LIST OF FIGURES
Windows layered over DOS..........ccoieiinienieinenneennnnnssessnsssesssnsssaesses 11
Sample WINAOW........ccocnriiiieennenensnsinnnnnssiesessssssssaensesssssassssssssssesasnes 13
Sample Dialog BOX......coevereriniiiicsiinncninniscesensssssneeeessessessesessasssssses 15
The ACtor ABOut BOX......uuccciiieiciiiniininnicnnsnisensssnnenesessessesessaessesaes 16
Actor Workspace WINAOW..........ccccieeciienrenensssecsssneensnersssssesssssessaseens 18
The Browser Window...........cccceeinininiccnninnennecennenenneensesieensensnssenes 19
The Multi-Lingual Database System...........ccceeveereinninreneniieniescecrenaneanes 22
Multiple Language Interface.........cccocevimniniinnneenecniicienrenseneesnnnennens 23
The Mixed-Processing STategy.........covuivuirerrerenrcniienrenenreseeneessensenees 25
The Multi-Backend Database System...........ccccereiiiiienenvcnncnennniecnnenne 26
MBDS/GLAD INterface.......cccoccevievrininineieninenrnnenecneeeeceeesensennesnes 31
Initiate QueryWindow from DMWindow.........cccceeveieiiieneenieeninnecnenns 40
QUETYWINAOW.....ciiuiiiiiitiiinrecerteeeenensressesssreseessenensessesssassssssaessaassees 41
QueryWindow Edit option selected...........cceerereecenrinninneieeneecernnnnnenns 42
Query Option POP-UP MEMU.......cccerrirreeneerrenrerraesrersaesaessaessessesssessessaesens 43
Sample QueryWindow after the Delete option of Query selected.......... 44
The Template options of QueryWindow.........cccceveerverciniieenenierniannienee 45
Template Window for Delete..........ccocoveriennnniniiciinnncnennininencneenn 46
The Describe option of QueryWindow.............cccvvirenrinierircnnesiinnennnens 47
The Send Query option of QueryWindow.........ccccoccvuruerenececiiiennencene 48
Awaiting Results from MBDS...........ccoomiiniinnniinieneceennneneeee e 48
The Results displayed in the Browse Window.........cccveenviniiininnicnnen. 49
The HELP option of QueryWindow...........ccccooeeviriennnniniiiiiiinnncne. S0

viii

Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21

GLAD TOp-IeVel WINAOW....ccccerrereruerriracnsncacsasssesansasssessessassssssassasne 51
Database Selection Dialog BoxX.......c.ccuiiveciievrccenreecsecsnneecnecseeesnensns 52
The Data Manipulation Window (DMWIndow)............cccceeeeeerrvecsvecranes 53
DMWindow's DESCRIBE option on Employee...........cccceurveecvneennnee 54
GLAD Browse and Display WindOWws.........ccccoeeuistececccnnnnncecseasarsaeceessens 55
Initiating a Query from DMWIindow.........ccccuceercernnneccnrenneenreecranesssaees 56
Query ready to be sent to MBDS from QueryWindow...........c.ccccveennne. 57
Awaiting Results from MBDS............cooinnccienneneennenreeneessscescenns 58
The Results of the Query displayed in the BROWSE Window.............. 58

ix

ACKNOWLEDGMENTS

I would like to express my sincere thanks to the people who helped me prepare and
implement this thesis. I would like to thank my advisor Dr. C. Thomas Wu for his help
in the conception and preparation of this thesis.

I would also like to thank my family, particularly my beautiful wife Susan for her
patience, support and love, without which none of this would have been possible. And
my children, Julianne, Christopher, and William who make each day brighter than the
day before.

L INTRODUCTION

A. BACKGROUND

As the 90's begin, we are at the dawn of the "paperless ship" concept. This concept
was first made popular by a former director of Surface Warfare, VADM J. Metcalf, USN
(Retired). Studies have determined that an Oliver Hazard Perry guided missile frigate
(FFG-7 class) with a crew of 185 men, and nominal 3500 ton displacement carries in
excess of 20 tons of paper required for the ship's mission and crew [Ref. 1:pp. 157-159].
The goal of the "paperless ship" is to reduce and ultimately eliminate tons of paper. This
reduction would allow the installation of more offensive or defensive weaponry to
improve all ship's ability to fulfill its required mission. It would also greatly reduce the
manpower and man-hours required to maintain this paperwork. This thesis will present a
tool using existing hardware and software to make the "paperless ship" a reality
tomorrow.

Tactical computers have been in the Navy for decades. Non-tactical computers have
only been in service on board ships for the last 15 years. The largest program at present
is the Ship's Non-tactical ADP program (SNAP II). While SNAP II was a giant leap
forward toward reaching the goal of the "paperless ship", it fell far short of its mark. At
times it seems to add paperwork. The SNAP II used hardware of the 60's with software
of the 70's and didn't reach the majority of the ships until the mid 80's. We need
something better for the 90's.

On the average Destroyer, the SNAP II system consists of one Harris mini computer
with a storage capacity of 80 Mbytes hooked up to 6 to 8 dumb terminals. The software

is still being added to, but some of the programs it handles are supply requisition and

inventory, Personnel Qualification System, and several simple tickler files. It also has a
limited word processing ability. It takes lots of man-hours to properly train individuals
on the basic functions of the system with each section requiring its own specific lessons.
With several terminals in use at the same time, which is a normal situation on most
ships, the systems performance degrades drastically.

The second major step forward occurred in 1985 when Zenith Data Corporation was
awarded a DOD contract to provide PC's, Zenith 248 AT compatible computers for the
Defense Department. Before that time, there was no standardization which led to a lot of
incompatibility of equipment. Also, for a command to purchase a computer it had to
write a letter of justification which took six months to get routed and approved. Then it
took an additional six months for Zenith and the supply system to deliver the units. After
the standardization, and when supply was able to keep up with the high demands, ships

and squadrons were able to receive several units.

B. THE NEED FOR RESEARCH
The situation as we enter the 90's is that a destroyer class ship has a SNAP II system
installed with 8 terminals and 5 to 7 Zenith 248 computers which are stand alone units.

This Thesis will propose that we can greatly improve the ship's ability to :

* reduce paperwork

* reduce man hours

* increase utilization and performance of the SNAP II system
* increase utilization and performance of the Zenith 248's

* by use of a graphical interface to simplify procedures for all users

Using the Zenith 248's as the front end would greatly reduce the load on the SNAP 1]

system since a majority of the work could be done on the 248's own processor, and only

access the SNAP's for specific information. The 248, using commercially developed
software, can handle a majority of the programs that are now done on SNAPs. With
more terminals available, time will not be wasted waiting for an open one. Using GLAD
provides an interface where the user is able to directly manipulate the required data.
Given the diversity of users, direct manipulation of logical objects is appealing to
novices, easy to remember for intermittent users and rapid for frequent users. [Ref. 2].
The focus of this research was to test the feasibility of providing such a graphical
interface from a front-end, in this case, a Zenith 248, and a backend database such as

SNAP II or its replacement.

C. THESIS ORGANIZATION

Chapter II provides a discussion of Object oriented programing and the Actor
software development environment.

Chapter III provides a description of the Multi-Lingual, Multi-Model, Multi-Backend
Database System (MBDS) and its Attribute Based Data Language. It discusses the
connection between the Backend and the Front end through a socket interface design by
another thesis student.

Chapter IV explains the implementation details of the query interface. First it looks
at the Graphics Language for Database (GLAD) background, and the reason it was
chosen as the interface for use in the system is discussed. Then it describes the
modifications and improvements to GLAD. And the specific implementation of the
QueryWindow, the sending of ABDL Queries and the data it receives back from MBDS ,
as well as some of the associated implementation difficulties are presented. And lastly, a
sample session of the research results running in GLAD is given. The various windows

that can be manipulated are illustrated and described.

Chapter V concludes with a summary discussion of the research and possible

enhancements as continuation of research in this area.

. OBJECT-ORIENTED PROGRAMMING AND THE ACTOR
ENVIRONMENT

A. OBJECT-ORIENTED PROGRAMMING (OOP)
1. Introduction

Object-oriented programming is a new and powerful programming environment.
Rather than working with traditional procedures, subroutines and separate data structures,
the programmer creates objects which control both the data structure and the operations
on that data. One of the goals of object-oriented programming languages is to reduce the
coding required to be written and maintained. This is accomplished by allowing the
programmer to build classes of reusable objects which encapsulate behavior and ensure
data abstraction.

Many languages claim 10 be object-oriented languages, however, in order for a

language to be considered object-oriented it must meet three criteria [Ref. 3:p. 1]:

¢ encapsulation of data and instructions into units of functionality called objects
* inheritance of functionality through a class hierarchy

* dynamic run-time binding of messages sent to objects

Languages such as Ada, Modula-2, and C++ which are advertised as object-oriented
languages fail to meet all three criteria. The Actor environment provides for

message-passing paradigm, inheritance, and polymorphism, the major characteristics of
object-oriented languages. Actor is an object-oriented programming language (OOL) for
MS-DOS microcomputers from The Whitewater Group Inc. The Actor environment will

be discussed in detail later in this chapter.

The basis of object-oriented programming is the creation and management of
objects. This is obtained by using the fundamental concepts in any OOL which are
object, class, and message.

2. Fundamental concepts of Object-Oriented Language
a. Objects

An object is a programming entity that resembles both tangible and intangible
real-world objects. An object has attributes and responds to instructions. At first it is
difficult to grasp the concept of an object. But we deal with objects constantly (people,
cars, pictures), OOP represents these physical objects as computer objects. For
example, an object as a functional entity is a car. A car object has attributes such as
model, engine, year and color. A car also responds to certain actions or instructions,
such as go (step on the gas), stop (step on the brake), turn (turn the wheel). When you
want the car to go, you are not interested in the drive train or the engine. All cars are
driven the same way, regardless of model or year. This is called data abstraction, the
ability to manipulate an object's data without knowledge of the data's internal format.
The big difference between procedural languages and object-oriented languages is that in
procedural functions work on data passed to them as parameters, while in object-oriented
you send a message to the objects to perform operations on themselves. In Actor, many
entities normally considered data structures are actually objects. For example, integers,
characters, strings and files are considered objects.

b. Classes

A class defines the structure and behavior of an object. A class describes
what is common in a category of objects, such as: the class of ships or class of students.
Any class describes a set of objects, where these objects are called instances of a class.

The instructions that an object can respond to are managed by the class, while the data

associated with a particular object is managed by the object itself. Using the previous
car example, Dodge is a class of car, and all Dodge cars belong to the class, but you
might have a red Dodge Daytona and a blue Dodge Caravan. The structure of a class is
defined by instance variables which contain the data private to that class. The behavior
of an object of a class is defined by its methods. Methods allow other objects to access
this data.

¢. Messages

Objects perform operations in response to messages. An object responds to a
message based on a behavior defined by the object's methods. Again back in the car,
when we press on the gas pedal, we send a go message to the car object. The car object's
transmission system has defined methods to respond to the message, increase fuel,
increase engine rpm.

There are two types of methods, what we have been using are called object
methods. These are associated to the instances of the class, and only allow messages to
that instance of the class. We need to be able to send messages not to the instances but to
the class itself. The best example of this is the new method to create a new object of a
class, it can't be an object method because the object does not exist, so it is handle by a
class method.

How does Actor execute methods and messages? A method gets executed by
sending a message to an object. The format for a message in Actor consists of a
selector, a receiver, and a list of arguments. When a message is sent to an object, it
looks to see if a method of the same name as the selector exists, if so, it executes the
method. If it fails to find a method within the instance of that class, an error message is

generated. The syntax of a method definition in Actor is:

/* Comments */
Def <methodName>(self [argument list [| <local variables>]])
{ statement 1;

statement 2;

statement n;
I
Actor methods can take up to eight arguments, and up to eight local variables. The local
variables are assigned and exist only during the life of the method. The above method
can be executed by sending it a message:
methodName(Receiver, arguments);
The selector would be "methodName", the receiver is "Receiver” , and the list of
arguments “arguments".
3. Inheritance, Polymorphism and Encapsulation
a. Inheritance
Inheritance is a mechanism for sharing behaviors between classes. In Actor,
each class inherits behavior from classes above it, its ancestors, and passes down
behavior to classes below it, its descendants. This behavior means that a descendant
class has access to all its ancestor's instance variables and methods, in addition to its own.
Actor uses single inheritance where each class is permitted only one direct ancestor.
[Ref. 4:p. 39]
This inheritance works throughout the Actor class tree, which is the

hierarchical ordering of all its classes. The most generic classes are at the top and the

more specialized classes at the bottom. All new classes must be descendants of classes
already defined in Actor. Since all classes are descendants of Object class, all classes
inherit methods and instance variables defined for the Object class.

When a message is sent to an object, the methods defined for the class which
this object belongs to are first searched. If there are no corresponding methods, then the
methods defined for the object's immediate ancestor class, parent class, are searched. If
again the search fails, then the methods of the object's grandparent are searched. This is
repeated all the way to the Object class.

In our previous example , the car class defines how cars in general behave.
The class Dodge inherits the general car behavior from car class, and adds behavior that
is specific to Dodge cars. But not all Dodges are the same so we define a Caravan class
which inherits from first Dodge class, then car class. Assume all Dodge's use the same
transmission, so that method would be defined in the Dodge class. When we press on the
gas pedal of a Caravan, a go message is sent. The Caravan class does not define a go
method, so the search continues to Caravan's immediate ancestor class, Dodge class. The
go method of Dodge is then executed.

b. Polymorphism

Polymorphism literally is defined as "the ability to take several forms". In
OOL, it is used to describe a situation where the same message causes different responses
depending on who the receiver of the message is. Actor allows different classes to have
the same method names. The methods could also have totally different implementations.
The result is that we can send the same message to different objects to produce different
responses. Polymorphism allows us to write generic reusable code more easily, since we

can specify general instructions and delegate the implementation details to the objects

that are involved. This decreases the dependencies in the code and maintenance is
therefore easier.

In the Dodge class, we can define a basic stereo method which says all
Dodges have AM/FM radios. In the Caravan we can define a separate stereo method that
states that all caravans have AM/FM cassette radios. The program determines at
run-time who the correct receiver of the message should be so that the correct stereo
method is executed.

¢. Encapsulation

One of the main goals of object-oriented programming is encapsulation. It is
accomplished by allowing access to data only through its own methods. No other parts
of the program can operate directly on another object's data. Therefore, this ensures that
the proper instructions are operated on. This allows many objects to respond to the same
messages but will execute their own methods. A program can send a generic message
and leave the implementation up to the receiving object. This decreases
interdependencies, and improves interchangeability and reusability.

One last look at our car example, we can think of a car's brake system as being
encapsulated. Although brakes may differ in implementation, disc or anti-lock, they are
all used by the driver by using the pedal: step on the brake pedal to stop the car, then let
go of the brake pedal and keep moving . It does not matter what type of brakes a car
has, that detail is insulated from the rest of the car and the driver. That makes it easy for
a driver to be able to use any car.

4. Object-Oriented Programming Summary
Procedural programming and object-oriented programming are quite different,
and understanding OOP was the first obstacle to overcome to implement this thesis.

Object-oriented programming closely links data and procedures as objects. The main

10

reason for using object-oriented programming is the ability to reuse code and develop

more maintainable systems in a shorter amount of time.

B. ACTOR ENVIRONMENT
1. Microsoft Windows
Since Actor is a Microsoft Windows (MS-Windows) application, to use it we
must know how to operate Windows in order to use it. Windows is a visual extension
of MS-DOS that layers itself upon DOS to provide the user with a friendly, graphical
interface. See Figure 2-1 for a graphic depiction of this concept. In Windows, the user
can execute multiple programs simultaneously in an integrated environment, which gives

the user a consistent interface whatever the application. Windows does not require the

User

Windows

Figure 2.1 Windows layered over DOS

11

users to memorize command line Commands and their syntax. This reduces the learning
curve for all window applications dramatically.[Ref . 5: p. 4]
a. MS-Windows requirements

MS-Windows runs on IBM personal computers or compatibles. Any system
on which you install Windows must meet the following minimum requirements:

A personal computer with two floppy disk drives or a fixed hard drive.

512K of memory (640K or greater is recommended)

DOS version 2.0 or greater o

A monochrome or color monitor with graphics card

Windows can be operated without a mouse, however, we will describe

Windows operations using a mouse, because Actor requires one.

12

b. Sample Window
Figure 2.2 shows a typical Notepad editor window, in MS-Windows

Systen Caption bar Maximize box
menu box (or title bar) Minimize box

=] [y wveaom . rx 1 [ENIETY
Menu bar SEARCH

Shift<-Del
Cntl<~Ins MICROSOFT

Pull-down Paste Shift-)Ins kunnsusssse
Menu Seleot All “a NS MHouse
pointer
Sizing Page 182, Microsoft Windows User"®
border The manual says the PIF Editor, PI

the PIF directory, a subdirectory
Actually, it is in the main VWindow

Page 228, ‘'Microsoft Windows User’
The manual says that if °“‘'you don°‘'t
SMARTDrive will receive 256K (the

Program's
client area

(work area)

ns~pos
Ieon
(Minimized

Figure 2.2 Sample Window

environment. Each element of Figure 2 .2 will be briefly described. [Ref. 6:p. 7]

* The Mouse pointer will show-up as an arrow pointer.

e The Program’s client area (Work area) is the working area of the window.
We can edit text or graphics by using the keyboard or the mouse.

e The Icons representing applications that have been minimized by clicking on
the minimize box, located in the right hand corner, appear in the Icon area at
the bottom of the screen.

* The Caption bar (title bar) displays the name of the application in the
window. In Figure 2-2, it is the Notepad. If the window is active, the area to

13

the left and right of the title will be filled in with a color (if capable) or
grayed to show that this is where you are working.

The System Menu box can be used to display the System menus in the
applications. This menu is common to all Windows programs.

The size box can adjust the size of the window by clicking on it with the
mouse and dragging it to either increase or decrease the window.

The Menu bar is similar to the System Menu bar, but this controls the features
unique to this window.

A Pull-down Menu is a submenu of an item displayed in the Menu bar. It
helps organize features and reduces clutter.

The Maximize box increases the window to fill the entire screen, while the
minimize box reduces the window to a Icon representation at the bottom of the
screen.

Scroll bars appear when there is more than one screen of information to be
displayed.

A vertical line |, I- Beam, indicates that text input is required in that
specific part of the window.

¢. Dialog Box

For short, simple communications between a Window application and a user, a

special window called a dialog box is used. Figure 2-3, shows a sample dialog box from

PCPaint. Dialogs are used to get specific information required by the application or to

warn the user of some error. They may contain several types of control devices, for

example;

push buttons
radio buttons
check buttons

edit fields

14

e list boxes

MS-Windows provides a visual interface in the form of windows that contain graphic

representations of user input and system output. The Menus are the principal means of

Enter print options ..

Number of copies: D

Quality Window
Radio
Button | Oraft @ Uhole
Proof QO Partrial

hY

(Cances}—>

Default

ush
utton

Figure 2.3 Sample Dialog Box

presenting the user options within an application. MS-Windows provides the

programmer over 600 "Kit routines" to develop application programs to run under its

user interface for its software development.

2. Actor

Actor is a MS-Window application; but unlike other Window applications, Actor

provides its source code in the form of predefined classes. This allows programmers to

access the Actor functions as well as all the MS-Window's functions. Actor provides

both the user and the programmer a very friendly environment, since the MS-Windows

operating environment is used . It is much more suitable for programming MS-Windows

than Microsoft C. With Actor's predefined classes, a programmer can write just a couple

15

of lines in Actor that would take literally several pages of C code. This type of coding
allows rapid prototyping and testing of applications. Actor provides several tools for
software development, which will be discussed later in this chapter.

The first thing you will see upon entering the Actor environment is Figure 2.4, the
About Actor box. By clicking on this box with the mouse, we enter the world of

- Aetor 1.7

Copywriqght ¢ 1986 1988
The Unhitewater Group, Inc

N1l rights reserved

Portions Copyuwright 1983 1988

Hicrosoft Covporation

Figure 2.4 The Actor About Box

object-oriented programming of Actor and can take advantage of the rich interactive

programming of MS-Windows.

16

a. Actor requirements

Actor version 1.2 requires:
¢ All the requirements of MS-Windows plus
* 640K of memory
® ahard disk
o graphics display and adapter
¢ mouse or other pointing device
This thesis research was successfully tested on a Department of Defense's
standard contract Zenith 248 microcomputer in its standard configuration.
b. Starting Actor
When we first begin Actor, two windows come up, The Display and the
Workspace. The Display window is used by the Actor environment to print system
messages, especially error messages. The Workspace window is the heart of the
environment. It is here that the programmer brings up other windows, such as the
Browser ,or, Inspection, and perform system level commands; Doit!, Cleanup!. These
windows and the system commands will be discussed later.
¢. Workspace Window
The Workspace is the main window of Actor. Figure 2.5 shows the Workspace
window. There are ten menu choices. The selections with exclamation point means their
are no pull-down submenus. The File, Edit, Utility, Templates menu items all have
submenus. Actor uses static and dynamic memory, the Show Room! menu displays
current memory usage. The Cleanup! menu item initiates a garbage collection function.
The Doit! menu item will execute a single command or a series of highlighted

commands. The Inspect! and Browse! open the Inspector and Browser windows

17

-

File Edit poitt [Inspect?! Browse?
Show Room? Utility Jemplates ODemos?

Sam := new(GladWindow,nil,"GladTopMNenu","G¢ L A Dif
show(Sam,1);

Cleanup?

San := new(QueryWindow,nil,’'QueryGlad”,"G L A D"
show(Sam,1);

load(""listwind.lod");

load();

LW := defaultNew(ListWindow, 'VEST");
show(LW,1);

Figure 2.5 Actor Workspace Window

respectfully. Both windows will be discussed in the following section. The File choice
includes commands concerning files, saving and editing work, and running other
MS-Windows programs. The Edit provides the ability to cut, copy, paste and clear text.
The Edit menu choice reappears in several of the other windows. The Utility! menu item
gives you methods to search through Actor code to find out which classes define or call a
particular method. The Templates allows the programmer to pick a control structure
like do, ifithen, and case. It then places that template into the Workspace where the
programmer can fill in the rest of the code.
d. Browser Window

To open a Browser window, click once on the Browser! in the above mentioned
Workspace menu bar. The Browser window, Figure 2.6, is used to create, modify or
destroy classes. It is through this window that we gain access to the powers of Actor.

The Browser is where the programmer does most of his work. This window allows us to

18

Class’'s instanoe
variabl

Accept
Jemplates

TextWindow
EditWwindow

Classes

Edit Box <

:';'1.::1“ initMenulD(self);
selected show(self,1);

nethod s hSockets := handSocket;

selObjName:=selDbject;
dbName := qdbName;
sel0bj := qselObj;:

Figure 2.6 The Browser window

examine, edit and add to Actor source code, and in the process, Actor is changed to
reflect any changes in the code. The Browser is a specialized file editor designed
specifically for manipulating the class source files. Figure 2.6 shows a sample Browser
window, the class that has been selected is the QueryWindow class which is the main
class for this thesis. This class has several methods that allow a user to formulate ABDL
queries and send them to the Backend data server, but this will be discussed in more
detail in the next chapters. The method being edited is the start method and its code is
then placed in the edit box where it can be added to or modified. [Ref 7:p. 4-15]

e. The Inspector and Debug Windows

The Inspector is used to examine the value of objects. To use it, select or

highlight any object in the Workspace and then click on the menu item Inspect! . The

Inspector window then comes up. In the upper left corner, we have a list box showing

19

names of the named instance variables. In the right corner, the keys to the indexed data
is displayed. We can select any instance variable and its value will be displayed in the
edit box at the bottom of the window. [Ref. 4:p. 1.3.5]

The Debug window is an important tool for the programmer. It combines the
features from the Inspector and the Browser to allow for diagnosing and correcting
programming errors "on the fly". It allows for modification of the program while it is
running and will resume the operations with the new corrections. The Browser window
catches syntax errors during compile time. The Debug window identifies run time errors
and allows the programmer to correct the error while still in the running program. This
is a great time saver, being able to accept (compile) and resume. The programmer can
place breaks in his program to do some debugging. When the program reaches a break

command it initiates the Debug window. [Ref. 4:p. 1.3.7]

C. SUMMARY

The goal of this chapter was to briefly introduce some of the key terminology used in
object-oriented programming, and to familiarize ourselves with the Actor environment.
Objects, classes, messages and methods are the building blocks in OOP, and are used by
Actor to create programs. Actor runs under MS-Windows and provides the programmer
its source code to develop applications under a user-friendly software development

environment.

20

IOI. BACKEND DATA SYSTEM AND SOCKET INTERFACE

A. BACKEND DATA SYSTEM
1. Database Management System DBMS

Over the past twenty five years, many different data models have been developed,
starting with traditional data models(such as the relational, the hierarchical and the
network models) to the newer, semantic data models(such as functional data model and
the entity-relationship model). This led to the implementation of several different
DBMS models and languages. Different database models could not use other models
data. In fact, updating equipment or a modification of the DBMS software would cause
previous transactions to be unusable. In the past couple of years, the ability to network
has increased the need for a new all encompassing DBMS. Users can access data or
databases around the globe, but because of the many different and unfamiliar languages
and models, they can't use the data unless they have people and equipment set up for the
specific model .Multi-lingual, Multi-Model, Multi-Backend Database System provides a
solution: this system allows the user to use/query any DBMS regardless of the specific
model, and without concern for the data manipulation language. For example, it will
allow a query of a network database via SQL transactions.

a. Multi-Lingual Database System

(MLDS) is a single database system that can execute transactions written

respectfully in different data languages and support the structure of various data models.
It is able to support all the different data models and languages, with a single underlying
database system. This system is referred to as the kernel data model (KDM) and the

kernel data language (KDL). Figure 3.1 shows the system structure of the MLDS. The

21

user interacts with the system through the language interface layer (LIL), using

a chosen user data model (UDM) to issue transactions written in a corresponding

LIL KC KDS

Data Model

UDM :User Data Model O
UDL :User DAta Language

LIL :Language Interface Layer

KMS :1KRernel Mapping System

KC tKernel Controller

KFS i:Kernel Formatting System

KDM :Kernel Data Model

KDL :Kernel Data Language

KDS iKernel Database Systenm

Data Language

System Module

Information Flow

Figure 3.1 The Multi-Linqual Database System [Ref. 8:p.12]

model-based user data language (UDL). The LIL sends the user transaction to the
kernel mapping system (KMS) . The KMS executes one of two possible tasks. The
KMS wransforms a UDM-based database definition to a database definition of the kernel
data model (KDM), when the user specifies that a new database is to be created. When
the user specifies a UDL transaction is to be executed, the KMS translates the UDL
transaction to a transaction in the Kernel data language (KDL) equivalents.
In the first task, KMS forwards transaction in the KDM data definition to the

kernel controller (KC). KC, in turn, sends the KDM database definition to the kerne!

database system (KDS). When KDS is finished with processing the KDM database

22

definition, it informs the KC. KC then notifies the user, via the LIL, that the database
definition has been processed and that loading of the database records may begin.

In the second task, KMS sends the KDL transactions to the KC. When the KC
receives the KDL transactions, it forwards them to the KDS for execution. Upon
completion, the KDS sends the results in the KDM form back to the KC. The KC routes
the results to the kernel formatting system (KFS). KFS reformats the results from the
KDM form to the UDM form. The KFS then displays the results in the correct UDM
form via LIL. The LIL, KMS, KFS, and KC define the language interface for a single
user-defined data model. In a MLDS, a separate language interface is required for each

model defined. This is shown in figure 3.2.

KMS 4
LIL 4/ \
K /

KMS 3

.

.

Figure 3.2 Multiple Language Interface

b

KC 1

23

In the current system, there are four unique language interfaces defined.

relational/SQL model

hierarchical/ DL/I model

network/CODASYL-DML model

functional/Daplex model
These have been developed and implemented by previous thesis students under
the guidance of Prof. David Hsiao and his assistant Mr. Thomas Chu. In contrast, the
KDS structure is a single, common component shared by all models. The KDS allows
the various user-defined language interfaces to access and manipulate the physical
database. The attribute-based data model and attribute-based data language (ABDL)
have been implemented as the KDM and KDL, respectively, for the MLDS. The ABDL
will be discussed later in this chapter. [Ref. 9:p. 11-13]
b. Multi-Model Database System

The multi-model database system is an improvement on the MLDS. It allows a
user to query any database using a data manipulation language of his choice, regardless
of the underlying data model. An example might be, a user can utilize a SQL query
transaction to access a hierarchical database. This allows existing databases and query
languages to be used when upgrading to a new database system. No longer do we have
to retrain people or rewrite the database every time we expand. This reduces error
caused during translation of existing database and existing queries into new systems.

The mixed-processing strategy is implemented to carry out the cross-access of
the databases as shown in Figure 3.3. Two components are involved, the schema
transformer and a second language interface. When a user selects a database that is not
in the local LI, language interface, all other LI's are searched for the desired database.

Upon finding the database, the original database schema is copied and transformed into

24

SCHEMA
Transformer

KDS

Figure 3.3 The Mixed-Processing Strategy

an equivalent schema in the local LI. When a user executes a transaction in the local data
manipulation language, the new language interface processes the request. The attribute
based request's output from this language interface is in the form of the original database
model which thereby eliminates the need for an extra language translation step. [Ref. 8:
p. 34)
¢. Multi-Backend Database System

The Multi-backend database system overcomes the performance problems and
upgrade issues related to the traditional approach of database system design. This is
accomplished through the utilization of multiple backends connected in parallel fashion.
These backends have identical hardware, replicated software, and their own disk systems.
A backend controller is responsible for supervising the execution of the database
transactions and for interfacing with the hosts and user, see Figure 3.4 . The backends
perform the database operations with the database stored on the disk system of the

backends.

25

As Shown in Figure 3.4, the user access is accomplished through a host
computer to the controller. When a transaction (a single request or a sequence of
requests) is received, the controller broadcasts the transaction to all the backends. Since
the database is distributed across the backends, all the backends processors execute the

same request in parallel. Each backend maintains its own request queue. As soon as a

Backend 1 Disk
Controller
[%%j I!i!

Backend 2 Disk
Transaction Controller

Applications Operating Backend
o)
Progranmns Systen Controller L
finswer ‘ . .
a

Backend N Disk

Controller

Figure 3.4 The Multi-Backend Database System |

backend finishes a request, it sends the result back to the controller and continues to
process the next request independent of the other backends. [Ref. 10:p. 32-33]
Performance gains are obtained by increasing the number of backends. For
example, if the size of the database and the transactions remain constant, then MBDS
would decrease the response time for a user transaction when the number of backends
increased. Even more important, if the database or the transactions increased in size,

MBDS could maintain an invariant response time with proportional increase in backends.

26

2. The Data Model and Data Language
The goal of the data-model transformation and data-language translations is to
maintain semantic preservation of the database and operational equivalence of the
transactions. As stated above, the attribute-based data model and ABDL have been
implemented as the KDM and KDL respectively in the multi-lingual database system.
a. The Attribute-Based Data Model
In the attribute-based data model, the data has the following constructs:

* Database consists of a collection of files

File contains a group of records which are characterized
by a unique set of keywords

* Record 1s made up of a collection of attribute-value pairs

Attribute-value pairs is a member of the Cartesian product of the attribute
name and the value domain of the attribute.

For example, <model,"Caravan"> is an attribute-value pair having "Caravan" as
the value for the model attribute. A record contains at most one attribute-value pair for
each attribute defined in the database. Certain attribute-value pairs of a record are called
the directory keywords of the record, because either the attribute-value pairs or their
attribute-value ranges are kept in a directory for identifying the records. Those
attribute-value pairs which are not kept in the directory are called non-directory
keywords. An example of a record is shown below.

(<FILE,USCars>,<MAKE,Dodge>,<MODEL,Caravan>,{mini-van})

The angle brackets, <,>, enclose an attribute-value pair, i.e., keyword. The
curly brackets , {,}, include the record body. The first attribute-value pair of all records

contains the attribute FILE and its value is the file name, in this case, USCars.

27

There are two major reasons for choosing the attribute-based data model. First,
the attribute-based data model is data independent, by this we mean, implementation and
application independent. All of the constructs mentioned above are not dependent on a
specific implementation or application. Second, the model allows the user to take
advantage of certain constructs for system optimization.

b. The Attribute-Based Data Language

The arttribute-based data language (ABDL) supports five primary database
operations, INSERT, DELETE, UPDATE, RETRIEVE, and
RETRIEVE-COMMON. A request is the primary operation in ABDL. Each request
contains a qualification which is used to specify the part of the database that is to be
operated on. Two or more requests may be grouped together to form a transaction. The
five operations will be shown below. It is through these transactions that we are able to
query and modify the database. These are very important to this thesis, their importance
will be shown in chapter four.

The INSERT request is used to add a new record into an existing database.
The qualification of an INSERT request is a list of attribute-value pairs and record body
being inserted. For example, the following INSERT request

INSERT(<FILE,USCars>,<MAKE,Ford>,<MODEL,Tempo>)
will insert a record into the USCars file for the Make Ford with a Model Tempo. This
record does not contain a record body.

The UPDATE request is used to modify records of a database. There are two
parts of the qualification of the UPDATE request. The two parts are the query and the
modifier. The query specifies which records of the database are to be modified. And the
modifier specifies how the records being updated are to be modified. For example, the
following UPDATE request

28

UPDATE (FILE=USCarsMODELYEAR=980)
will modify all of the records of the USCars file by changing all the model years to 90.
In the above request, the (FILE=USCars) is the query and (MODELYEAR=90) is the
modifier. Another example for when you only want a specific part of your database
updated is shown below.

UPDATE((FILE=USCars)and(MAKE=AMC))(MAKE=Chrysler)

This example will change all the records in USCars of make, AMC, to replace AMC with
Chrysler. The query is ((FILE=USCars)and(MAKE=AMC)), note the placement of
parenthesis, and the modifier is (MAKE=Chrysler).

The DELETE is used to remove one or more records from the the database.
The qualification of a DELETE is a query. For example, the following request

DELETE((FILE=USCars)and(MAKE=Edsel))
will delete all records whose make is Edsel in the USCars file.

The RETRIEVE request is used to access records of the database. the
qualification of a retrieve consist of a query, a target-list, and a by-clause. Again the
query specifies which records are to be retrieved. The targer-list consists of a list of
attributes whose attribute values are to be output to the user. The optional by-clause may
be used to group records. The following RETRIEVE request

RETRIEVE((FILE=USCars) and(MAKE=Chrysler))(MODEL)
will output to the user the model names of all the records in the USCars file with a make
of Chrysler. In the above example the query was ((FILE=USCars)
and(MAKE=Chrysler)), the target-list was (MODEL),and the by-clause was not used.
Here is a RETRIEVE request using the by-clause.

RETRIEVE(FILEz=USCars)(MAKE,MODEL,MODELYEAR)BY MAKE

29

This example will list the make, model, modelyear of all the records in USCars by their
make.

The last request is the RETRIEVE COMMON . It is used to merge two files
by a common attribute-value. This request can be considered a transaction of two
retrieve requests with a common clause in between that are processed serially in the
following general template.

RETRIEVE(query-1)(target-list-1)

COMMON(attribute-1,attribute-2)

RETRIEVE(query-2)(target-list-2)

The Common attributes are numbered according to their respective RETRIEVE. For
example, The following RETRIEVE-COMMON request

RETRIEVE((FILE=USCars))(MAKE,MODEL)

COMMON(MODELYEAR,MODELYEAR)

RETRIEVE((FILE=GERMANCars))(MAKE,MODEL)
will find all records in the USCars and GERMANCars with the same MODELYEAR and
return a list of the MAKE and MODEL. In this case, the target lists of the two
RETRIEVE requests are the same but that is not required.

These five database operations are simple, yet powerful enough to be complete.
They are complete in the sense that typical storage, retrieval and update of data can

easily be accomplished.

B. THE SOCKET INTERFACE
1. Socket Interface between MBDS and GLAD
The Socket interface was written by LT. Hogan [Ref. 11]. It required the

integration of three separate programming tasks, in three different programming

30

environments. The first task was to implement a "server" version of the MBDS system
which would allow the GLAD system to remotely interact with MBDS. The second task
involved implementing a separate socket interface written in Microsoft C that the

personal Computer using windows could connect to MBDS. The last task was to connect

- SENDING SOCKET

777] RECEIVING SOCKET
ISI
MINICOMPUTER GLAD
MBDS SOCKET 4— GLAD SOCKET /DD
INTERFACE _ETHERNET “E'“"“'%Immracs (
==
18M PC

FIGURE 3.5 MBDS/GLAD Interface

the Window's socket to the Glad Environment. Figure 3.5 shows an overview of the

MBDS/GLAD interface.

a. The MBDS Socket Interface
The MBDS Socke: Interface establishes a communication link via an Ethernet
network from the backend, in this case the ISI minicomputer to the front end, an IBM
compatible PC. To enhance the reliability of the system and to aid in debugging, LT.
Hogan chose to use separate sending and receiving sockets on both the backend and the

front. As shown in Figure 3.5, all the queries from GLAD are sent via DDE, dynamic

31

data exchange, by messages to the GLAD socket interface, which transmits them
through its sending socket to MBDS's receiving socket. On the reverse, all MBDS data
and error messages are sent through MBDS's sending socket to the GLAD socket
interfaces’ receiving socket, and are then sent via DDE messages to GLAD.

To activate the MBDS socket interface, they created a Test Interface, TI,
portion of MBDS. The TI is the user-interface for MBDS and presents the user with the
following top-level menu upon starting MBDS.

The Multi-Lingual/Multi-Backend Database System

Select an operation:

(a) - Execute the attribute-based/ABDL interface
(r) - Execute the relational/SQL interface

(h) - Execute the hierarchical/ DL/I interface

(n) - Execute the network/CODASYL interface
(f) - Execute the functional/DAPLEX interface
(2) - Execute the object-oriented/GLAD interface
(x) - Exit to the operating system

Select->___

At the present time, a user must first log onto the ISI minicomputer and start the
Multi-Lingual/Multi-Backend Database System. To initiate an interface with the GLAD
system, a user selects operation (g) which sets up the MBDS socket interface. This must
be done prior to attempting to open any MBDS databases from the GLAD system on the
PC. A future enhancement will be able to place the MBDS in the server mode directly
from within GLAD.

The receiving socket is set up first. Then the sending socket is created and the

MBDS system enters its server mode, awaiting messages from GLAD. Messages are

32

sent over the network by sending the length of the message. Based on this message
length, storage is dynamically allocated for the incoming message. The first three bytes
of any message is the message type. Presently, three types of messages are supported by
MBDS. The three are open database, query database, and terminate session. If an
improper or invalid message is received, an appropriate error message is sent back to
GLAD.
The open database option allows GLAD to initiate an MBDS database for use.
An example of an open database message is:
010CARS
The 010 is the code used to signify that this is an "open database" message and CARS is
the name of the database to be opened. After all the records have been loaded, the user
and database IDs are broadcast to the 12 processes which make up the MBDS system. If
MBDS is unable to open and load the database properly, an appropriate error message is
sent over the network to GLAD. If MBDS is successful, and the database is loaded then
MBDS waits to process other incoming messages.
The query database option allows the GLAD user access to the data in any

previously opened MBDS database. Below is an example of a "query database" message.

020CARS@[RETRIEVE((FILE=USCars)and(MAKE=Dodge))(MODEL)]
The 020 is the code used to signify that this is a query database message. An "@"
symbol is used to delimit the end of the database name, which in the above query is
CARS. Anything following the "@" sign is the actual query itself. The query is sent to
the Request Preparation which handles the parsing and execution of the query. After
MBDS has processed the query, the results are gathered and translated to the GLAD's
data format, which consists of an "&" character following each attribute, and carriage

return and line feed (CR-LF) at the end of each record. MBDS uses an "@" symbol

33

rather than the CR-LF at the end of each record in order to transmit the results through
the socket in one continuous stream. On the GLAD side, the GLAD's socket interface
saves the results in a text file, and replaces the "@" symbols with CR-LF's. MBDS has a
restriction on the length of the query result responses. If a response is too large, it is
broken up into segments and an "end of results" marker is placed at the end of the final
segment. These segments are then transmitted back to GLAD, followed by a special
message indicating that all query results have been transmitted, and MBDS awaits the
next message from GLAD.

The Terminate Session option is sent when GLAD wishes to close the sockets
interface to MBDS. The message length of zero is transmitted. When MBDS receives
this terminate session message, it leaves the server mode, closes its sockets, and returns
to the top-level menu, allowing the user to restart a new session or select another MBDS
option.

b. The Glad Socket Interface

GLAD uses Window's Dynamic Data Exchange protocol to sends messages
with MBDS request to the socket interface. The socket interface receives these messages
in the form of WM_DDE_REQUEST messages in which the string containing GLAD's
request is referenced by an atom that is passed in the message. The message is then sent
to MBDS, first the message length then the message itself. There is no error checking on
the GLAD side, all of it is done on the MBDS side.

When MBDS returns the results from a query, they are stored in a text file
named "gresults.fil" on the PC. As mentioned above, the "@" symbol at the end of each
record returned by MBDS is replaced by a.CR-LF combination prior to storing it in the

text file. Each record is stored on a different line in the GLAD data format. When all

34

the results of the query are gathered in the file, a WM_DDE_DATA message is sent to
indicate that the data has been received. [Ref. 12]

35

IV. IMPLEMENTATION

In this chapter, we will demonstrate the ability to use a Graphics Language Interface
on a front-end PC and link it to a MBDS backend. We will discuss the Graphics
Language for Database (GLAD), and why we used it. We will discuss some of the
modifications made to the existing GLAD, and what new classes were added. Finally,

we will present a sample session of GLAD with a sample database.

A. GRAPHICS LANGUAGE FOR DATABASE
1. Background

The Basis of this thesis was to explore the possibilities of providing a graphical
interface on a PC to a MBDS backend. GLAD is an ongoing project developed and
supervised by Professor C. Thomas Wu at the Naval Postgraduate School in Monterey,
CA. The reason for developing GLAD stems from the realization that an end-user visual
interaction tool was needed for the database systems. Glad will provide the end-user ,
regardless of the type of database system (relational, network, hierarchical), with a
coherent interface. This will allow the user to visually interact with the system for data
manipulation and program development. The current GLAD prototype system is
implemented with data definition, data manipulation, on-line help system, and the ability

to store and manipulate graphic images as a part of a database.

2. Hardware and Software requirements
In chapter two, the fundamentals of object-oriented programming and Actor were
discussed. GLAD was developed using the Actor programming language under
MS-Windows version 2.1 . Using Actor allowed for rapid prototyping of the GLAD

36

system. For most programming languages, it takes a great deal of time to learn even the
basics. This is not the case of Actor, Actor allows the programmer to create simple
programs within a matter of days. The complexity of the programs grows rapidly. The
goal of this thesis was not to build a complete system, but a system that would
demonstrate the feasibility of implementing our goals. Actor gives the programmer the
flexibility to quickly test interface design alternatives and make changes to the designs
rapidly. See [Ref. 12,13,14] for a more detailed discussion of the advantages of using
Actor to implement GLAD.

The GLAD prototype system as it was implemented for this thesis requires the

following :

¢ IBM compatible computer (80286 or better)

* Minimum of 640K of memory (one to four expanded recommended)
e Hard disk

* Graphics display and adapter (EGA or better recommended)

* Mouse (or other pointing device)

¢ Microsoft Windows version 2.03 or higher

* MS-DOS version 2.0 or higher
The network used for this thesis was the Ethernet computer network and it requires:

o Excelan EXOS 205T Model 4 Intelligent Ethernet Controller Board

¢ Excelan LAN WorkPlace Network Software for PC DOS TCP/IP Transport
System

e Excelan LAN WorkPlace Network Software for PC DOS Socket Library
Application Program Interface

37

The Microsoft Windows environment and that of GLAD are very CPU and Memory
intensive, so the amount of random access memory, hard disk access time and the speed
of the CPU determines the user response times. But for the prototype system, the Zenith

248 was sufficient for both development and implementation.

B. MODIFICATIONS
One of the great advantages in using GLAD under the Actor environment is the ease
at which a programmer can modify already existing programs. This modularity allows
changes to be made without having to change existing methods and in most cases, one
does not even need to know anything about other methods.
1. Resource File
The only change required in the ACTOR.RC file was the insertion of the menu
format for the new QueryWindow class. A complete listing of ACTOR.RC is contained
in Appendix A. A sample of the ACTOR.RC that was modified is listed below.
QueryGlad MENU
BEGIN
MENUITEM "&Send Query",21
POPUP "&Edit"
BEGIN
MENUITEM "Cu&t\tShift+Del", EDIT_CUT
MENUITEM "&Copy\tCtrl+Ins", EDIT_COPY
MENUITEM "&Paste\tShift+Ins”, EDIT_PASTE
MENUITEM "Cé&lear\tDel", EDIT_CLEAR
MENUITEM SEPARATOR
MENUITEM "Select &AINCtrl+A", EDIT_SELALL
END

38

MENUITEM "&Describe",12

POPUP "Q&uery"
BEGIN
MENUITEM "&Insert", 22
MENUITEM “&Update", 24
MENUITEM "&Delete", 25
MENUITEM SEPARATOR
MENUITEM "&Retrieve”, 23
MENUITEM "Retrieve &Common", 26
END

POPUP "&Templates"
BEGIN
MENUITEM "&lnsert...", 32
MENUITEM "&Update...", 34
MENUITEM "&Delete...", 35
MENUITEM SEPARATOR
MENUITEM "&Retrieve...", 33
MENUITEM "Retrieve &Common...", 36
END

MENUITEM "&QUIT",11

MENUITEM "\aF1 Help", 10,Help

END

This is the code required to set up the QueryWindow class menu. After all changes were
made the RC file was compiled, this produced a new ACTOR.EXE file with all the

changes.

39

2. DMWindow Class

The Data Manipulation Window gives the user the ability to manipulate the
database schema and its data. Since GLAD is based on an object-relationship model,
objects (entities) of the database schema are shown as rectangular boxes in the
DMWindow. For this thesis, the only modifications to the DMWindow Class were the
addition of two methods. They were Query and returnQuery. The window for the
interface to allow queries of the MBDS is created in a class called QueryWindow. Since
QueryWindow is a descendent of EditWindow class and not DMWindow class, there
had to be a connection to pass information. The Query method initiates the call to

QueryWindow when Query is selected in the DMWindow, see figure 4.1. The Query

DMUindow initiate QueryWindow

Data Manipularion: MBDS l1r5t_
4

Describe Expand ListMembers Change NINTI8Y
ShowConnection Quict

Employee Employer

Figure 4.1 Initiate QueryWindow from DMWindow

method creates a new window called QueryWindow and passes pieces of information
from DMWindow that QueryWindow will need to properly access the records of the
MBDS. The returnQuery is a method that QueryWindow calls to use some of the

40

methods already built in DMWindow. This method is called from QueryWindow after a
record has been INSERTED, UPDATED, or DELETED. This is an example of the

reusability of previously written code. The code for DMWindow.cls is listed in
Appendix B.

C. IMPROVEMENTS
1. QueryWindow Class
The QueryWindow class gives the user a Window in which they call, create and
send Queries, see figure 4.2. At this time, it has been implemented to send queries to the

backend MBDS system, in the ABDL format. After the query has been sent the results

E Glad to HMBDS Queries OF: Enployee
Send Query Edit pescribe Query Jemplates QUIT

Figure 4.2 QueryWindow

are then displayed in the Browse Window, which will be discussed later in this chapter.
One of the future improvements will be the development of a GLAD query language, and
a SQL query language to the MBDS. While in the QueryWindow, a user can select the

4]

type of query they desire by selecting the Query option in the QueryWindow menu.
This causes a pop-up menu to appear which shows five options. The five options are the
five primary operations allowed by ABDL as discussed in the previous chapter. The user
can Insert, Delete, Update, Retrieve, or Retrieve Common. After making a selection
one a user friendly template will be placed in the QueryWindow's editable area with the
correct format for the query. This greatly reduces the amount an individual has to
remember about the syntax and decreases the amount of input required by the user. For a
more detailed template, the user can select the Templates option for whichever query he
desires. The Edit option gives the user the full power of an Edit Window, to make
corrections. The Describe option is the same as it is in the DMWindow class, it presents
the attributes of the Selected Object. The Send Query option sends the query formed in
the QueryWindow to the backend. The Help option gives a little explanation of how to
use the QueryWindow. The next sections will discuss each of these in detail. The code
for QueryWindow class is in Appendix C.
a. Edit
This menu option, when selected, gives the user a pop-up menu, see figure 4.3.

E Glad to NBDS Queries OF: Fupluyee
Send Query Describe gueru Iemplates QUIT
Cut Shift->Del

Copy Cntl->Ins
Paste Shift-dins

Select All

Figure 4.3 QueryWindow Edit option selected

42

It allows the user to manipulate the query they may have written. This allows the user
to edit any errors quickly and easily. Since these are the standard edit functions used
throughout Windows, little if any learning is required to use them. From the pop-up

menu under Edit, the options available are:

¢ Cut - allows the user to remove the high-lighted text from the window and
put it on the Clipboard.

¢ Copy - allows the user to make a copy of the high-lighted text from the
window and it is placed on the Clipboard.

¢ Paste - allows the user to take what has been placed on the Clipboard and
insert it into the QueryWindow.

¢ Select All - allows the user to high-light all the text in the QueryWindow.

b. Query
This menu option, when selected, gives the user a pop-up menu, see figure 4.4.

This Query option gives the user five options; Insert, Delete, Update, Retrieve, or

=) Glad to MBDS Queries OF : Enployee
Send Query Edit Describe RNV

Update
Delete

Retrieve
Retrieve Common

Figure 4.4 Que.y option pop-up menu

43

Retrieve Common. After selecting one a user friendly template will be placed in the
QueryWindow's editable area with the correct format for the query. Figure 4.5 show a
sample of the results of selecting the Delete option. This greatly reduces the amount an

individual has to remember about the syntax and decreases the amount of input required

Glad to HBDS Queries 0f: tnployee
Send Query Edit pescribe (Query Jemplates QUIT

[020F IRSTR[DELETE((TEMP= Employee) and ())]

Figure 4.5 Sample QueryWindow after the Delete option of Query

is selected

by the user. The message code 020 and the file that is open is automatically filled in as
well as the selected-object, in this case it is Employee. The only thing that the user needs
to fill in is the specifics of the qualification of the transactions. For example, he could
type in NAME=Hogan.

[DELETE((TEMP=Employee) and (NAME = Hogan))]

All five of Query options give the user similar templates

¢ Insert - 020FIRST@[INSERT(<TEMP=Employee>,< >)]

e Update - 020FIRST@[UPDATE((TEMP=Employee)and(=)) <= >)]

¢ Delete - 020FIRST@ [DELETE((TEMP=Employee) and (=))]
¢ Retrieve -020FIRST@[RETRIEVE(TEMP=Employee)(, ,)]

* Retrieve Common - 020FIRST@[RETRIEVE(TEMP=Employee)(, ,)]
COMMON(,)
{RETRIEVE(TEMP=)(, ,)]

These allow the user to do any type of data manipulation on the records from the
front-end PC more easily than a user can on the backend system as they exist today.
c¢. Templates
Every language has constructs that control the execution of a program. The
ABDL language is no different. The Template option , see figure 4.6, when selected

will display a more detailed template for each of the five ABDL operations. These are

[—] 30 BD |
Send Query Edit pDescribe Query d QuIT
Insert ...
Update ...
pelete ...
Retrieve ...
Retrieve Common ...
4
- >

Figure 4.6 The Template options of QueryWindow

displayed in a separate window above the QueryWindow so they can be visible for the
user while they type in their query. Figure 4.7 shows an example of the Delete

Template. A further enhancement will allow the user to copy and paste directly

45

between the Template Window and QueryWindow. There is a template for each of the
five ABDL operations.

E_i ovrnat for o an DELE I Um-rl)-

hbﬂanﬂ[DELETE((TEMP=sel0bj) and
(Attr1 = jones)) }

ad to HBDYS Querae Ot

Figure 4.7 Template Window for Delete

d. Describe
The Describe option calls a method back in DMWindow class. This is useful
to allow the user to see the structure and the attributes for the selected-object that they are
presently working on. Figure 4.8 shows an example where Employee is the
selected-object and the Window shows Employee's four attributes NAME, AGE,
SALARY, and PHONE. This provides the user with all the information needed to
formulate the query correctly. Combining the templates for each query inserted in the

QueryWindow, and the more detailed templates accessed through the Templates option,

46

a user has a complete picture of what he needs for each query. All three windows remain

visible as long as the user needs them.

= Glad to HEDS Queries OF: Enploges
Send Query [Edit [UEAISLLE Query Jemplates QUIT

Sl vkvcivse ot : inplovecl

Name string
Age Int
Salary Int
Phone String

Figure 4.8 The Describe option of QueryWindow

e. Send Query

The Send Query option takes the query that is displayed in the QueryWindow
and sends it to the backend, see figure 4.9. At this time there is no error checking
accomplished in GLAD. All the error checking is done by the MBDS side; should an
error occur, an error box will appear with a description of the error. A user can then just
correct his query and resend the message. After the query is sent an "Awaiting Results
from MBDS ..." dialog box will appear to let the user know that their query was sent,
see figure 4.10. The results of the query will be displayed in the Browser Window,see
figure 4.11.

47

= Glad to HBDS Queries o toploger
SUILEIURTEN Edit Describe Query Jemplates QUIT

S20F IRSTA[INSERT(STEMP ,Employee) ,{NANE ,Nardi> ,<Rge,
27> ,{SALARY ,99808> ,<PHONE ,7391>)]

Figure 4.9 The Send Query option of QueryWindow

== Glad to HBDS Queries OF: Enployee
NIILEINTORVEN Edit Describe Query Jemplates QUIT

020F IRST
27> ,<SAL

m Awaiting

hgﬂ Results from
MBDS...
Please Wait

Figure 4.10 Awaiting Results from MBDS

48

E Glag to MBDS Queries OF: biployes
SUIMMINTUNTER Edit Describe Query Jemplates QUIT

S20F IRSTB[INSERT (<TEMP ,Employee> ,{NAME ,Nardi> ,<Rge,
27> ,CSALARY,990900)> ,<PHONE ,7391>)]

==

More Modify

a”-hs New Inserted
234
:1234 record for Nardi
%3578
%1982

Figure 4.11 The Results displayed in the Browse Window

f. Help
This option at present only displays a dialog box that gives a brief explanation
of the use of the QueryWindow. In the future, this will be connected to the on-line help
that was done by a previous student in the future. Figure 4.12 shows the Help option as
it exists at the present time.
8. Quit
The Quit option allows the user to close the QueryWindow and all the other
windows that were created during its use. This option returns us back to the DMWindow

where we originally called QueryWindow.

D. SAMPLE SESSION
1. Starting GLAD to receiving Results

49

E-i:mn to NBDYS Gueries o boployee
Send Query Edit pDescribe Query Jemplates QUIT
b1 Help

This program demonstrates simple ABDL
queries to a MBDS back-end

For a example of each type of query,
look under the template‘'s menu item
and select the specific query.

Figure 4.12 The HELP option of QueryWindow

The following is a sample session of GLAD with a sample MBDS database and
the QueryWindow extension. At each level of interaction, the interface window will be
described. This demonstration will enter GLAD at the beginning and walk a user
through to the point where a query has been sent to MBDS and the results have returned.

a. GLAD Top-Level Window

The GLAD Top-Leve! Window is the starting point for all transactions. Figure
4.13 shows the GLAD Top-Level Window, from this window a user can create, modify,
open or remove a database. Since GLAD was developed under the Actor environment,
the use of a mouse is required for most operations. Each of the menu options available at

this level will be discussed briefly.

50

Create Modify Open Remove Quit

Figure 4.13 GLAD Top-Level Window

The options available under GLAD Top-Level Window are:

¢ Create - Allows the user to create a new GLAD database.
e Modify - Allows the user to modify an existing database schema.
e Open - Allows the user to open a database for display and modification.

* Remove - Allows the user to delete an existing database from the system.

To begin our session, we select the Open menu option. By placing the mouse arrow on
the word Open and double clicking the left mouse button, a dialog box is displayed, see
figure 4.14. In this dialog box is a listing of all the databases that exist in the system.
Here, instead of a menu, the user's options are displayed as buttons to the right of the
database listing. Should there be more databases than can fit in the window, a scroll bar
allows the user to move up and down the list. To open a specific database, a user has two

options. The first is to point to the desired database and, as before, double click the left

51

mouse button. Or the user can point at the database's name, click once, then point to the
button that reads OPEN, and click once there. This type of feature, which allows the
user to do the same operation in many different ways, is used throughout the GLAD
environment. It makes it easy for the experienced user as well as the beginner to quickly

navigate themselves through the system.

Create Modify Open Remove Quit

GLAD Databases

AN1S MWeliocopter DB -

s, Salee
Test Conneotion DB - HELP
CANCEL

Universiry Davabase

Figure 4.14 Database Selection Dialog Box

For this session we will select MBDS First. Notice that MBDS First is in the
white letters on a black background, (this is called high-lighted) showing that the item
has been selected. As mentioned above, to select an item point the mouse cursor on it
and click the left mouse button once. All the MBDS databases have the prefix MBDS
prior to their name. When a MBDS database is opened, the socket interface must be set
up between GLAD and MBDS. Once both sockets are set up, GLAD sends a request to
MBDS to open the database, in this case the First database. After MBDS acknowledges
that the database is opened, then GLAD displays the data manipulation window

(DMWindow) for this database using a locally stored database schema file. A further

52

improvement will not require the database schema to be stored locally but it would be
sent from MBDS.
b. Data Manipulation Window (DMWindow)
The DMWindow displays the objects of the database, represented as

rectangular boxes with the object's name in the center of each box. Figure 4.15 shows an

Create Modify Open Remove Quit | F1 Help

Ou: MBDS o
Describe Expand ListMembers Change Query
ShowConnection Quit F1 Help

Employee I Employer

Figure 4.15 The Data Manipulation Window (DMWindow)

example of a DMWindow with our First database. The menu options for the

DMWindow are:

o Describe - Allows the user to display the attributes of the selected objects.
Figure 4.16 shows an example with Employee as the selected object.

e Expand - Allows the user to display sub-classes of the selected object.

¢ ListMembers - Allows the user to display and modify the object’s data using
an all-at-once(Browse) or one member(Display) at a time. Figure 4.17 shows
an example of both. The BROWSE window shows all the data for Employee

while the DISPLAY shows one record, in this case, Jones.

e Change - not implemented at this time.

53

Query - Allows the user to query MBDS databases using ABDL queries.
When selected it calls up the QueryWindow, see later section for more details.
¢ ShowConnection - not implemented at this time.

¢. List Member Window

This window displays all the records of the database object. Here again the

scroll bars enable the user to access portions of the database which do not fit in the

Create Modify Open

Remove Quit

ODesoribe Expand ListMenbers
ShowConnection Quit

Change Query
F1 Help

Employer Conpany

B STRUCTURE OF: Employeeil

Name sctring
Int
Salary Int

Phone Sctring

Figure 4.16 DMWindow's DESCRIBE option on Employee

window. Figure 4.17 shows the records of the Employee object. If a user wants to view

an individual record in detail, he can select the More option after selecting that specific

record. This will call the Display One Window.

d. Display One Window

Figure 4.17 also shows a Display One Window which, as described above,
enables a user to see all the information contained in a specific record.

In the Display One Window, the user has the following options:

Add - add a new record to the selected object.

54

e Delete - remove this selected record.

e Modify - change the data in this selected record.

Create Modify Open Remove Quit

2 SHLAY: Employe
Add Delete Modify Prev
Next GoTo All Quit

%2343
x1234

S x3378
lJones %1982

x43589
x7391

o s
x
(65 | _ x7654

12997

: . o x1111
130000 OTOTY

x72683

Dha g x5109

Figure 4.17 GLAD Browse and Display Windows

* Prev - move one record up in the list.
¢ Next - move one record down in the list.
e Goto - Allows the user to move to the first, last, or Ith record.

¢ All - Opens a BROWSE or List Member Window.
e. QueryWindow
If the user desires to query the MBDS database, they would select the Query
option in the data manipulation window menu. Figure 4.18 shows the selection and the
results of the selection. After selecting Query, the query window is displayed. For a
more detailed discussion on each of the menu options, please refer to the previous section

on QueryWindow. For this session, we will skip over some of the details. The next step

S5

is to create our query. What we want to do is insert a new record for Nardi in the
selected object, Employee. After selecting the Query option of QueryWindow, we fill in
the details of the record for Nardi, NAME, AGE, SALARY, and PHONE. If we had

Create Modify Open Remove Quit

Data Manipul str0on: HMENS Fax ,!—

Desoribe Expand ListMembers Chanse RIIVISSY
ShowConneotion Quit [F1 Nelp |

=] Glad to MBDS Queries OF: Erployee

& [

Figure 4.18 Initiating a Query from DMWindow

forgotten the attributes of Employee, we could select the Describe option and they would
be displayed exactly as they are displayed in the DMWindow. If by chance, a more
detailed template for the insert query is needed, we could select Insert from the pop-up
menu of the Templates option of QueryWindow. Now that we have the query correct,
see figure 4.19, we are ready to send it to the backend, MBDS. To do this we select the
option Send Query, notice that it is high-lighted. After we select Send Query, the query
is sent to the MBDS via the socket interfaces. Figure 4.20 shows the message that the
query has been sent to MBDS and that GLAD is waiting for the results. Should the
query have an error in it, a message from MBDS will tell the user the type of error. The

user can then edit the query in the QueryWindow to correct any mistakes and then resend

56

the query. When MBDS has completed the query, it will send the results back to GLAD
where they will be displayed for the user. Figure 4.21 shows the results of our insertion

Create Modify Open Remove Quit

21> ,(SALARY,99800> ,(PHONE,7391>)]

D
m

Figure 4.19 Query ready to be sent to MBDS from QueryWindow

of Nardi into the Employee record. The Browse window is automatically presented for
Insert, Delete, and Update for the user's convenience.

This interface is a vast improvement over the present MBDS interface. One of
the ways to further improve the GLAD interface is to allow the user to insert, delete, and

update from the Display One Window. This is not implemented at the present time.

57

Create NModify Open Remove Quit

Bato Mantpulation: MEDS
Describe Expand ListMembers Change Query
ShowConnection fuit

Glad to HEDS Queries 0F: Frployee

fwaiting
Results from

MBDS...
Please Wait

Figure 4.20 Awaiting Results from MBDS

Create Modify Open Remove Quit

=_Uata Manipulation: ABUS lxrst—

Describe Exp

Showt tie E

4 o/ slmla
100000 x2345
33000 x1234
63000 x3578
36000 %1987
235000 x4389
99800 x?2391
230900 x4719
12000 x1943
45000 x106?

Figure 4.21 The Results of the Query displayed in the BROWSE Window

58

V. CONCLUSIONS

A. AREVIEW OF THE RESEARCH

The goal of the research conducted in this thesis was to provide an extension to

GLAD that would provide the user with an ABDL Query ability to access the database

on the MBDS backend. The graphical interface provides an user friendly system that any

user at any level of experience could use immediately. The QueryWindow allows the

user to use any of the five ABDL queries. This window also with some minor

modifications will allow any type of queries, SQL or GLAD's own query language when
it is developed.

B. FUTURE ENHANCEMENTS

Since the GLAD system is still evolving, there are many possible enhancements to

the present system which include, but are certainly not limited, to the following:

Improved Socket Interface - While a socket interface presently exists, there
is room for improvement. We would like the socket interface to be an integral
part of the GLAD system instead of its present configuration. Another
improvement is to allow the user to remotely initiate the MBDS system from
the individual front-ends. Also needed is the ability for the MBDS system
once opened from GLAD, to send the Database's schema to the front-end
instead of having the front-end constantly storing them.

Expand the Query Language Ability - With the Navy's recent push towards
the "paperless ship" concept, the need for the ability to generate and process
the multitude of Database Models required to maintain a large navy becomes
imperative. First there is a need for a GLAD query language for GLAD
defined databases. Secondly, the development of a SQL query ability.

Digital Manuals - One of the major goals of the "paperless ship” is to take
advantage of computers' ability to store, access and assimilate data. An
addition to GLAD should be a hypertext ability. This would greatly reduce
the amount, weight and storage area required by the vast number of technical

59

and maintenance manuals required by each ship. It would also decrease the
man-hours required to access the necessary data.

* Integrated Package - The Navy needs to develop under a user friendly
interface system which every user can use. GLAD and MS-Windows provide
such an environment. The package should handle word processing, AMI,
databases, GLAD, and graphics, PCPaint.

* SNAPII Backend Prototype - The present system shows the ability and
beauty of GLAD as a front-end interface for a backend. Since GLAD was
developed on the Zenith 248 computer, it can be used in the Fleet today not
ten years from now. The next goal should be linking GLAD to a SNAP II
mini-computer and develop querying ability to the data already out in the
fleet.

C. DISCUSSION AND BENEFITS OF THE RESEARCH

GLAD offers user friendly environment for the novice as well as the experienced
user. The Navy has thousands of Zenith 248s in service, and a user group whose
expertise varies from one end of the spectrum to the other. The vast majority have had
no background what-so-ever in computers. It takes a considerable amount of time to
train these individuals to perform specific tasks. Right now they are required to learn a
different system for each major operation, one for databases, one for word processing
and another for supply requisitions.

The GLAD and MS-Window environment gives the user one over all system to learn
with many major features carrying over from one application to another. This integrated
package has great potential for both the military and civilian sector. It is just such a
package that has led to the popularity of the Macintosh computers by Apple. The IBM
computers have as much or more power, and the software is as good as the Macintosh but

Macintosh has it all integrated for the user! Replacing all the Zenith 248s and other

computers with Macintosh is not the answer.

60

Prof. Wu has a sister project, ARGOS, being developed on the Macintosh. It is an
outstanding demonstration of the power of a hypertext feature on a PC. Hypertext on
IBM computers is just beginning to match the ease and power of the Macintosh.

Although this sister project named ARGOS is impressive, it unfortunately relies on
Macintosh computers which are not readily available to the fleet today. GLAD is an
attempt to mirror the progress made in the ARGOS project; and in area of database needs

we believe we have surpasses ARGOS. GLAD is the solution today and tomorrow.

61

The following

APPENDIX A. ACTOR .RC RESOURCE FILE

listings are the Actor code that was either created or modified for the

implementation of this thesis.

; Resource Script File for Actor version 1.2

#include "STYLE.h"
#include "actor.h"
#include "track.h"
#include "demos.h"
#include "glad.h”

work
Browser
FileWindow

ICON work.ico
ICON browser.ico
ICON filewind.ico

Inspector ICON inspect.ico

cube
Actor

DATA cube.dat
BITMAP actor.bmp

gladicon ICON glad.ico
socketicon ICON sockets.ico

GladTopMenu

BEGIN
MENUITEM
MENUITEM
MENUITEM
MENUITEM
MENUITEM
MENUITEM

END

GladTopMenu
BEGIN

MENU

"Create”, 1

"MOdify", 2

"Open", 3
"Remove”, 4

"Quit", 6

"\aF1 Help", 5, HELP

ACCELERATORS

VK_F1, 5, VIRTKEY
VK_DELETE, EDIT_CLEAR, VIRTKEY
VK_DELETE, EDIT_CUT, VIRTKEY, SHIFT

VK_INSERT,

EDIT_COPY, VIRTKEY, CONTROL

62

VK_INSERT, EDIT_PASTE, VIRTKEY, SHIFT

END

QueryGlad MENU
BEGIN

MENUTTEM "&Send Query",21
POPUP "&Edit"
BEGIN
MENUITEM "Cu&N\tShift+Del", EDIT_CUT
MENUITEM "&Copy\Ctrl+Ins", EDIT_COPY
MENUITEM "&Paste\tShift+Ins", EDIT_PASTE
MENUITEM "C&lear\tDel", EDIT_CLEAR
MENUITEM SEPARATOR
MENUITEM "Select & AINCtri+A", EDIT_SELALL
END

MENUITEM "&Describe",12

POPUP "Q&uery"
BEGIN
MENUITEM "&Insert", 22
MENUITEM "&Update", 24
MENUITEM "&Delete", 25
MENUITEM SEPARATOR
MENUITEM "&Retrieve", 23
MENUITEM "Retrieve &Common", 26
END

POPUP "&Templates"

BEGIN
MENUITEM “&lInsert...", 32
MENUITEM "&Update...", 34
MENUITEM "&Delete...", 35
MENUITEM SEPARATOR
MENUITEM "&Retrieve...", 33
MENUITEM "Retrieve &Common...", 36

END

MENUITEM "&QUIT",11
MENUITEM ™aF1 Help", 10,Help

END

63

QueryGlad ACCELERATORS
BEGIN
VK_F1, 10, VIRTKEY

VK_INSERT, EDIT_PASTE, VIRTKEY
VK_DELETE, EDIT_CUT, VIRTKEY
VK_SUBTRACT, EDIT_CUT, VIRTKEY
VK_ADD, EDIT_COPY, VIRTKEY

VK_LEFT, VK_LEFT, VIRTKEY
VK_UP, VK_UP, VIRTKEY
VK_RIGHT, VK_RIGHT, VIRTKEY
VK_DOWN, VK_DOWN, VIRTKEY

"Aa", EDIT_SELALL
'IASI" 21
"Az", BR_ZOOM

VK_TAB, EDIT_TAB, VIRTKEY
VK_PRIOR, EDIT_PRIOR, VIRTKEY
VK_NEXT, EDIT_NEXT, VIRTKEY
VK_HOME, EDIT_HOME, VIRTKEY
VK_END, EDIT_END, VIRTKEY

VK_DELETE, EDIT_CUT, VIRTKEY, SHIFT

VK_INSERT, EDIT_COPY, VIRTKEY, CONTROL

VK_INSERT, EDIT_PASTE, VIRTKEY, SHIFT
END

GladDmIMenu MENU
BEGIN
MENUITEM "Describe”, 1
MENUITEM "Expand", 2
POPUP "ListMembers"
BEGIN
MENUITEM "All at Once", 3
MENUITEM "One by One", 4
END
POPUP "Change”
BEGIN
MENUITEM "Add data”, 5
MENUITEM "Delete data",6

MENUITEM

END

MENUITEM

MENUITEM

MENUITEM

MENUITEM
END

GladDdIMenu

BEGIN
MENUITEM
MENUITEM
MENUITEM
MENUITEM
MENUITEM
MENUITEM
MENUITEM

END

GladLMMenu
BEGIN
MENUITEM
MENUITEM
MENUITEM
MENUITEM
END

GladOMMenu
BEGIN
MENUITEM
MENUITEM
MENUITEM
MENUITEM
MENUITEM

"Modify data”, 7

"Query”, 8
"ShowConnection", 9
"Quit", 11

"\aF1 Help", 10,HELP

MENU

"Save", 1

"Define", 2
"Attribute", 3
"Expand”, 4
"Delete"”, 5

"Quit", 7

"\aF1 Help", 6,HELP

MENU

"More", 1
"Modify", 2

"Quit", 4

"\aF1 Help", 3,HELP

MENU

"Add", 1
"Delete", 2
"Modify", 3
"Prev", 4
"Next", 5

POPUP "GoTo"

BEGIN
MENUITEM
MENUITEM
MENUITEM
END
MENUITEM

"First", 6
"Last", 7
"I'th", 8

"All", 9

65

MENUITEM "Quit", 11
MENUITEM "\aF1 Help", 10,HELP
END

GladCOMenu MENU
BEGIN

MENUITEM "Quit", 1
END

ABOUT_GLAD DIALOG 90,34,122,80

STYLE WS_DLGFRAME | WS_POPUP

BEGIN
CTEXT "GLAD Version 0.03", -1, 23,12,72,11, WS_CHILD
CTEXT "Naval Postgraduate School", -1, 8,25,105,10,WS_CHILD
CTEXT "Dept of Computer Science”, -1, 9,37,100,11, WS_CHILD
ICON "gladicon",-1,26,50,16,16, WS_CHILD
DEFPUSHBUTTON "START", IDOK, 70,58,39,14, WS_CHILD

END

DATAWAIT DIALOG LOADONCALL MOVEABLE DISCARDABLE 12, 18, 98,
74

STYLE WS_DLGFRAME | WS_POPUP

BEGIN

CONTROL "socketicon", -1, "static”, SS_ICON | WS_CHILD, 13, 20, 16, 26
CONTROL "Awaiting Results from MBDS... Please Wait", 101, "static",

SS_CENTER | WS_CHILD, 36, 19, 58, 33

END

OPNDBLIST DIALOG LOADONCALL MOVEABLE DISCARDABLE 70, 23,
166, 102
CAPTION "GLAD Databases"
STYLE WS_DLGFRAME | WS_POPUP
BEGIN
CONTROL "" DB_LB, "listbox", LBS_NOTIFY | LBS_SORT !
LBS_STANDARD |
WS_BORDER | WS_VSCROLL | WS_CHILD, 5, 16, 110, 82
CONTROL "OPEN" DEFBUTTON, "button", BS_DEFPUSHBUTTON |
WS_TABSTOP |
WS_CHILD, 125,17, 33, 13
CONTROL "ABOUT" ABOUT_DB, ‘“button", BS_PUSHBUTTON |
WS_TABSTOP |

WS_CHILD, 125, 41, 33, 13
CONTROL "HELP" HELP_LB, "button", BS_PUSHBUTTON | WS_TABSTOP |
WS_CHILD,
126, 62, 32, 13
CONTROL "CANCEL" 2, "button", BS_PUSHBUTTON | WS_TABSTOP |
WS_CHILD, 125, 82,
33,13
CONTROL "GLAD Databases" -1, "static", SS_CENTER | WS_CHILD, 17, 4,
83,10
END

RMVDBLIST DIALOG LOADONCALL MOVEABLE DISCARDABLE 70, 23,
166, 102
CAPTION "GLAD Databases"
STYLE WS_DLGFRAME | WS_POPUP
BEGIN
CONTROL "" DB_LB, ‘listbox", LBS_NOTIFY | LBS_SORT |
LBS_STANDARD |
WS_BORDER | WS_VSCROLL | WS_CHILD, §, 16, 115, 82
CONTROL "REMOVE" DEFBUTTON, "button", BS_DEFPUSHBUTTON |
WS_TABSTOP |
WS_CHILD, 126, 16, 33, 13
CONTROL "CANCEL" 2, "button", BS_PUSHBUTTON | WS_TABSTOP |
WS_CHILD, 126, 81,
33,13
CONTROL "ABOUT" ABOUT_DB, "button", BS_PUSHBUTTON |
WS_TABSTOP |
WS_CHILD, 126, 39, 33, 13
CONTROL "HELP" HELP_LB, "button", BS_PUSHBUTTON | WS_TABSTOP |
WS_CHILD,
127,61, 32,13
CONTROL "SELECT the one to be REMOVED" -1, "static", SS_CENTER |
WS_CHILD, 0, 3,
124,10
END

DEFOBJ DIALOG LOADONCALL MOVEABLE DISCARDABLE 23, 21, 136, 98
CAPTION "OBJECT DEFINITION"
STYLE WS_BORDER | WS_CAPTION | WS_DLGFRAME | WS_POPUP
BEGIN
CONTROL "Enter Object Name:" 0, "static", SS_LEFT | WS_CHILD, 8, 5, 74, 10
CONTROL "" OBJ_NAME, "edit", ES_LEFT | WS_BORDER | WS_TABSTOP |
WS_CHILD,

67

8,16, 117,12
CONTROL "Atomic" ATOMIC, "button”, BS_RADIOBUTTON | WS_GROUP |
WS_TABSTOP
| WS_CHILD, 25, 44, 40, 12
CONTROL "Nested" NESTED, "button", BS_RADIOBUTTON | WS_TABSTOP
| WS_CHILD,
70, 44, 41, 12
CONTROL "Nesting Level" LEVEL, "button", BS_GROUPBOX |
WS_TABSTOP
WS_CHILD, 20, 31, 93, 30
CONTROL "Accept” IDOK, "button", BS_PUSHBUTTON | WS_GROUP |
WS_TABSTOP |
WS_CHILD, 17,70, 42, 14
CONTROL "Cancel" IDCANCEL, "button", BS_PUSHBUTTON |
WS_TABSTOP |
WS_CHILD, 76,71, 42, 14
END

ATTRIB DIALOG LOADONCALL MOVEABLE DISCARDABLE 11, 18, 208,
216
STYLE WS_DLGFRAME | WS_POPUP
BEGIN
CONTROL "Attribute Name:" DT_CENTER, "static", SS_LEFT |
WS_CHILD, 6, 18, 64, 12
CONTROL "Attribute Type:" 5, "static”, SS_LEFT | WS_CHILD, 6, 54, 79,

12
CONTROL "Length of field:" 15, "static", SS_LEFT | WS_CHILD, 6, 90, 86,
10
CONTROL "" ATTR_NAME, "edit", ES_LEFT | WS_BORDER |
WS_TABSTOP |
WS_CHILD, §, 30, 105, 15
CONTROL "" ATTR_TYPE, "edit", ES_LEFT | WS_BORDER |
WS_TABSTOP |
WS_CHILD, §, 67, 105, 15
CONTROL "" ATTR_LENGTH, "edit", ES_LEFT | WS_BORDER |
WS_TABSTOP |

WS_CHILD, 5, 102, 105, 16

CONTROL "" ATTR_LIST, "listbox", LBS_NOTIFY | LBS_SORT |
LBS_STANDARD |
WS_BORDER | WS_VSCROLL [WS_CHILD, 5, 126, 106, 82
CONTROL "Add" IDOK, "button", BS_PUSHBUTTON | WS_TABSTOP |
WS_CHILD, 138,
42,44, 14

68

CONTROL "Delete" ATTR_DELETE, "button", BS_PUSHBUTTON |
WS_TABSTOP |
WS_CHILD, 138, 72, 44, 14
CONTROL "Type List" TYPE_LIST, "button", BS_PUSHBUTTON |
WS_TABSTOP |
WS_CHILD, 138, 102, 44, 15
CONTROL "Quit" IDCANCEL, "button", BS_PUSHBUTTON |
WS_TABSTOP |
WS_CHILD, 139, 132, 44, 14
CONTROL "Attributes for object” 16, "static”, SS_LEFT | WS_CHILD, 29,
5, 86,8
CONTROL " OBJ_NAME, “"edit", ES_LEFT | WS_TABSTOP |
WS_CHILD, 118, 5, 74, 12
END

ATTRLIST DIALOG LOADONCALL MOVEABLE DISCARDABLE 11, 18, 122,
122
STYLE WS_DLGFRAME | WS_POPUP
BEGIN
CONTROL "" TYPE_LIST, ‘listbox”, LBS_NOTIFY | LBS_SORT |
LBS_STANDARD |
WS_BORDER | WS_VSCROLL | WS_CHILD, 7, 6, 105, 74
CONTROL "Accept” IDOK, "button”, BS_PUSHBUTTON | WS_TABSTOP |
WS_CHILD, 18,
90, 33, 14
CONTROL "Cancel" IDCANCEL, "button", BS_PUSHBUTTON |
WS_TABSTOP |
WS_CHILD, 68, 90, 29, 14
END

STRINGTABLE

BEGIN
IDSNAME, "Actor"
IDSAPP, "ACTOR.IMA"

1, "Divide by 0"

2, "Index is out of bounds”

5, "Non-integer index argument to primitive"
7, "invalid size sent to new primitive"

10, "Out of static memory”

16, "Wrong number of block arguments”

19, "Break occurred”

69

20, "Too large for Char conversion"

21, "Wrong number of arguments”

22, "Wrong argument type to primitive"

27, "Bad range to copyFrom primitive”

32, "Can't convert to Windows short argument"
33, "Long is too large for Int conversion"

36, "Bad range input to munger primitive"

40, "Primitive receiver is nil"

syntaxError, "<<< Syntax error"

eosError, "<<< Premature end of input"

sLitError, "Unterminated String literal"
undefError, "<<< Undefined variable name"
litSymError, "<<< Incoreect literal symbol format"
curClassError, "No current class in Compiler”
ancestError, " is not an ancestor of "

inheritError, " is not a function in "

litNumError, "<<< Improper literal number format"

wNameError, "<<< No such MS-Windows routine”

wSynError, "<<< Improper MS-Windows call syntax"

litArrayError, "<<< Improper literal array syntax"

litArrayOvflError, "<<< Literal array is too large"

defineError, "<<< Improper #define format"

litRectError, "<<< Improper literal rectangle format”

infixError, "<<< Not a valid infix expression"

commentError, "<<< Unterminated comment"

registerError, "Couldn't register class”

menuError, "Couldn't load menu"

wCreateError, "Coulcn't create window"

emptyError, "Empty collection”

elemNotFndError, "Element not found in collection”

dosError, " reported DOS error# "

rangeError, "Index is out of bounds”

undefCharError, "<<< Undefined"

ivarsError, "Structs can't have instance variables”

handleError, "No handle obtained for object”
wCallArgsError, "Wrong number of args in Windows Call"
numTempsError, "Total arguments and locals can't exceed 15"

; Used for results of checkError
52, ", File not found"
53, ", Path not found"
54, ", No file handle available; all in use”

”

55, ", Access denied"

56, ", Invalid file handle"

58, ", Insufficient memory"

65, ", Invalid drive specification”

150, "Attempted to move freed object:”
151, "Adding to scavenger list:"

152, "Dynamic memory is full."

153, "Free list is corrupted.”

154, "Scavenge list is full.”

155, "Out of object pointers."

156, "S..apshot write failed."

157, "Snapshot load failed."

158, "Not enough memory to run Actor.'
159, "Not enough dynamic for static gc."
160, "Actor Display”

161, "Requires higher static setting."

162, "Requires higher dynamic setting."”
163, "ActorxAE 1.2"

164, "Windows/Actor stack overflowed "
165, "Windows/Actor stack underflowed "
166, "Actor stack overflowed"

167, "Corrupted object memory"

168, "Actor symbol table is full”

; Miscellaneous Actor system strings. DO NOT MODIFY!
300, "Class Definition Error”

301, " cannot be redefined."”

302, "Recompile these classes?"

303, "Delete these classes?”

304, "Class Name Error"

305, " already exists. Use About Class dialog.”
306, " exists. Should it be overwritten?"

307, "File Conflict"

308, "File Renamed"

309, "Old work has .BAK extension."

310, " source is unavailable."

311, "Class Source File Error”

312, " file not found in "

313, "Actor Error"

314, "FileWindow is not loaded"

315, "File Editor: Untitled"

316, "File Edit Error”

317, "The file is too large."

71

318, "Discard changes?"

319, "Save text as:"

320, "workmenu"

321, "Actor Workspace"

322, "** Recompile classes; remove existing instances **"
323, "Untitled"

324, "browmenu"

325, "Browser"

326, "/* class comment */"

327, " class definition */ "

328, "debugmenu”

329, "Debugger: "

330, "Can't resume!"

331, "classes\"

332, "work\"

333, "backup\\’

334, "EditWindow"

335, "File Error”

336, "FileEditMenu"

337, "File Editor”

338, "Breakpoint”

339, " bytes reclaimed.”

340, " bytes available."

341, "Syntax Error”

342, "Recursive error:"

343, "Actor Error: "

344, "Not understood:"

345, "Recursive message send failure:"
346, " doesn't understand:"

347, "Ccmpilation Error”

348, " is undefined. Should it become a global variable?”
349, "Undefined Name"

350, "Bytes Free"

351, "Static: "

352, " MS-Windows: "

353, "Missing BACKUP directory for source.”
354, "Write the Image to this file:"

355, "Load Error”

356, "You must assign LoadFiles before using load().”
357, "Warning!"

358, "Dynamic memory is getting low."”
359, "Run Application”

360, "Application file name:"

361, "Editor: "

72

362, "Inspector: "

363, "Browser: "

364, "workedit"

365, "Senders"

366, "Implementors”

367, "References”

368, "Global References”

369, "inspmenu”

370, "Do you really wish to close this window?"

371, "MS-Windows function "

372, " takes "

373, " argument(s)."

374, " (CLASS)"

375,"" ; can use " (OBJECT)" if you want this label for object methods
; in the Browser

376, "Stack frames above recompiled method are now invalid."”

377, "You must exit Actor before exiting Windows"

378, " Dynamic: "

; template strings

TEMP_DO, " do(receiver, {using(elem) });"

TEMP_IF, " if cond then stmtList; endif;"

TEMP_IFEL, " if cond then stmtList; else stmtList; endif;"

TEMP_BLOCK, " {using(elem) }"

TEMP_CASE, " select case cond is stmtList;endCase case cond is stmtList;endCase
endSelect;"

TEMP_LOOP, " loop while cond begin stmtList; endLoop;"

TEMP_NMETH, "/* comment */ Def method(self) { }"

END

Actor ACCELERATORS

BEGIN
VK_INSERT, EDIT_PASTE, VIRTKEY
VK_DELETE, EDIT_CUT, VIRTKEY
VK_SUBTRACT, EDIT_CUT, VIRTKEY
VK_ADD, EDIT_COPY, VIRTKEY

VK_LEFT, VK_LEFT, VIRTKEY
VK_UP, VK_UP, VIRTKEY
VK_RIGHT, VK_RIGHT, VIRTKEY
VK_DOWN VK_DOWN, VIRTKEY

"Aa", EDIT_SELALL
"Ar", BR_LREFORM

"Az", BR_ZOOM

VK_TAB, EDIT_TAB, VIRTKEY
VK_PRIOR, EDIT_PRIOR, VIRTKEY
VK_NEXT, EDIT_NEXT, VIRTKEY
VK_HOME, EDIT_HOME, VIRTKEY
VK_END, EDIT_END, VIRTKEY

VK_DELETE, EDIT_CUT, VIRTKEY, SHIFT

VK_INSERT, EDIT_COPY, VIRTKEY, CONTROL

VK_INSERT, EDIT_PASTE, VIRTKEY, SHIFT
END

ABOUT_BOX DIALOG DISCARDABLE 59, 79, 151, 128
STYLE WS_POPUP | WS_DLGFRAME
BEGIN
CTEXT "ActorxAE 1.2" -1, 1, 12, 147, 10
CTEXT "Copyright \xA9 1986-1988" -1, 1, 28, 147, 10
CTEXT "The Whitewater Group, Inc." -1, 1, 39, 147, 10
CTEXT "All rights reserved.” -1, 1, 50, 147, 10
ICON "work" 5, 24,98, 13, 17
ICON "browser" 6, 114, 98, 13, 17
CTEXT "Portions Copyright \xA9 1983-1988", -1, 1, 68, 147, 10
CTEXT "Microsoft Corporation”, -1, 1, 79, 147, 10
DEFPUSHBUTTON "&Ok" IDOK, 57, 99, 32, 14, WS_GROUP
END

INPUT_BOX DIALOG DISCARDABLE 77, 94, 165, 71
STYLE WS_BORDER | WS_CAPTION | WS_DLGFRAME | WS_POPUP
BEGIN
EDITTEXT FILE_EDIT, 10, 32, 138, 12, WS_BORDER | WS_CHILD |
WS_TABSTOP | ES_AUTOHSCROLL
LTEXT "", INPUT_MSG, 11, §, 143, 18, WS_CHILD
DEFPUSHBUTTON "&Ok" IDOK, 32, 50, 32, 14, WS_CHILD
PUSHBUTTON "&Cancel" IDCANCEL, 99, 50, 32, 14, WS_CHILD
END

ERR_BOX DIALOG DISCARDABLE 48, 32, 210, 85

STYLE WS_POPUP | WS_CAPTION

CAPTION “Error Dialog"

BEGIN
DEFPUSHBUTTON "&Ok", IDOK, 172, 8, 28, 14, WS_GROUP
PUSHBUTTON "&Debug", IDYES, 172, 28, 28, 14, WS_GROUP
LISTBOX ERR_LB, 4, §, 160, 70

74

END

DW_BOX DIALOG DISCARDABLE 27, 27, 201, 105

STYLE WS_DLGFRAME | WS_POPUP

BEGIN
LTEXT "The text in the Browser edit window has been" 2, 10, 11, 180, 10
LTEXT "changed. Accept or Cut to Clipboard?" 3, 10, 24, 150, 10
PUSHBUTTON "&Accept", DW_ACC, 10, 47, 75, 14, WS_CHILD
PUSHBUTTON "Cut to C&lipboard”, DW_CTC, 10, 74, 75, 14, WS_CHILD
DEFPUSHBUTTON "A&bandon", DW_ABA, 110, 47, 75, 14, WS_CHILD
PUSHBUTTON "&Cancel", IDCANCEL, 110, 74, 75, 14, WS_CHILD

END

FRACTAL_BOX DIALOG DISCARDABLE 90, 69, 160, 85
CAPTION "Fractal Controls"
STYLE WS_BORDER | WS_CAPTION | WS_DLGFRAME | WS_POPUP
BEGIN
CONTROL "Type" -1, "button”, BS_GROUPBOX | WS_CHILD, 8, 9, 66, 50
CONTROL "&Koch" ID_KOCH, "button", BS_RADIOBUTTON |
WS_TABSTOP | WS_CHILD, 12, 20, 28, 12
CONTROL "&Square Koch" ID_SQKOCH, "button", BS_RADIOBUTTON |
WS_CHILD, 12, 31, 56, 12
CONTROL "&Peano" ID_PEANO, "button", BS_RADIOBUTTON |
WS_CHILD, 12,42, 33,12
CONTROL "Order" -1, "button", BS_GROUPBOX | WS_GROUP | WS_CHILD,
86,9, 30, 70
CONTROL "&1" ID_ORDERI1, "button", BS_RADIOBUTTON | WS_CHILD,
94, 20, 16, 12
CONTROL "&2" ID_ORDER?2, "button", BS_RADIOBUTTON | WS_CHILD,
94, 31, 16, 12
CONTROL "&3" ID_ORDER3, "button", BS_RADIOBUTTON | WS_TABSTQP
| WS_CHILD, 94, 43, 16, 12
CONTROL "&4" ID_ORDER4, "button", BS_RADIOBUTTON | WS_CHILD,
94, 54, 16, 12
CONTROL "&5" ID_ORDERS, "button", BS_RADIOBUTTON | WS_CHILD,
94, 65, 16, 12
CONTROL "50" ID_LENGTH, "edit", ES_LEFT | WS_BORDER | WS_GROUP |
WS_TABSTOP | WS_CHILD, 40, 67, 34, 12
CONTROL "Length: " -1, "static", SS_LEFT | WS_CHILD, 8, 69, 28, 8
CONTROL "&OK" IDOK, "button", BS_DEFPUSHBUTTON | WS_TABSTOP |
WS_CHILD, 124, 26, 28, 14
CONTROL "&Cancel" IDCANCEL, "button", BS_PUSHBUTTON |
WS_TABSTOP | WS_CHILD, 124, 53, 28, 14
END

75

DCL_BOX DIALOG DISCARDABLE 44, 25, 234, 134

STYLE WS_DLGFRAME | WS_POPUP

BEGIN
PUSHBUTTON "&Delete Files" DCL_DEL, 38, 97, 60, 14, WS_CHILD
PUSHBUTTON "Save &Files" DCL_SAYV, 38, 113, 60, 14, WS_CHILD
DEFPUSHBUTTON "&Snapshot” IDOK, 136, 97, 60, 14, WS_CHILD
PUSHBUTTON "&Cancel" IDCANCEL, 136, 113, 60, 14, WS_CHILD
LTEXT "You have modified the image. The modified source” 9, 12, 5, 204, 10
LTEXT "files for the following classes are located in the" 2, 12, 16, 205, 10
LTEXT "WORK directory." 2, 12, 27, 63, 10
LTEXT "" DCL_LIST, 11, 43, 212,22, WS_BORDER | WS_CHILD
LTEXT "Before quitting, do you want to take a snapshot, or" 5, 13, 69, 208, 10
LTEXT "save the modified source files in the WORK directory?” 8, 12, 80, 212,

10
END

FILE_BOX DIALOG DISCARDABLE 27, 23, 192, 105

STYLE WS_DLGFRAME | WS_POPUP

BEGIN
EDITTEXT FILE_EDIT, 54, 5, 127, 12, ES_AUTOHSCROLL | WS_CHILD

CONTROL "" FILE_LB, "listbox", LBS_STANDARD | WS_TABSTOP |
WS_CHILD, 10, 39, 99, 57

DEFPUSHBUTTON "&Open", IDOK, 135, 47, 32, 15, WS_CHILD
PUSHBUTTON "&Cancel", IDCANCEL, 135, 73, 32, 15, WS_CHILD
CONTROL "File name:" 3, "static”, SS_LEFT | WS_CHILD, 10, 7, 41, 11
CONTROL "" FILE_DIR, "static", SS_LEFT | WS_CHILD, 10, 23, 176, 11

END

CLASS_BOX DIALOG DISCARDABLE 36,48,270,160
STYLE WS_POPUP | WS_CAPTION
CAPTION "Class Definition"

BEGIN
LTEXT "Name:", CLASS_LNAME, 4, 2, 20, 14
EDITTEXT CLASS_NAME, 4, 12, 100, 14
LTEXT "Ancestor:", CLASS_LANC, 4, 28, 40, 14
EDITTEXT CLASS_ANCEST, 4, 38, 100, 14
RADIOBUTTON "&Byte", CLASS_BYTE, 6, 64, 30, 14
RADIOBUTTON "&Word", CLASS_WORD, 40, 64, 30, 14
RADIOBUTTON "&Ptr”, CLASS_PTR, 70, 64, 30, 14
GROUPBOX "Format", CLASS_FORM, 4, 54, 100, 26
CHECKBOX "&Indexed"”, CLASS_IDX, 4, 82, 40, 14

DEFPUSHBUTTON "Accept”, IDOK, 46, 86, 28, 14 ; new default
Windows 2.0

for

PUSHBUTTON "Cancel", IDCANCEL, 76, 86, 28, 14 ; no longer the default

LTEXT "Variables:", CLASS_LVARS, 108, 2, 50, 14
EDITTEXT CLASS_VARS, 108, 12, 160,
ES_AUTOVSCROLLIES_MULTILINEIWS_VSCROLL
LTEXT "Comment:", CLASS_LCOM, 4, 96, 40, 14
EDITTEXT CLASS_COM, 4, 106, 264,
ES_AUTOVSCROLLIES_MULTILINEIWS_VSCROLL
END

; methodbr.rc for lang ext I

9’

MBrowMenu MENU
BEGIN
MENUITEM "&Accept!", BR_ACCEPT

POPUP "&Edit"
BEGIN
MENUITEM "Cu&\iShift+Del", EDIT_CUT
MENUITEM "&Copy\Ctrl+Ins", EDIT_COPY
MENUITEM "&Paste\tShift+Ins", EDIT_PASTE
MENUITEM "C&lear", EDIT_CLEAR
MENUITEM SEPARATOR
MENUITEM "Select &AINCtri+A", EDIT_SELALL
MENUITEM "&ReformaiuCirl+R", BR_REFORM
END

MENUITEM "&Doit!", INSP_DOIT
MENUITEM "&Inspect!", INSP_ISEL

POPUP "&Utility"

BEGIN

MENUITEM "&Implementors”, WORK_IMP
MENUITEM "&Senders", WORK_SYMSEND
MENUITEM "&Global References”, WORK_GLOSEND
MENUITEM "&References”, WORK_SEND

END

POPUP "&Templates”
BEGIN
MENUITEM "&do", TEMP_DO
MENUITEM "&if/then”, TEMP_IF

77

90,

52,

MENUITEM "if/&else", TEMP_irEL
MENUITEM "&block", TEMP_BLOCK
MENUITEM "&select/case”, TEMP_CASE
MENUITEM "&loop", TEMP_LOOP
MENUITEM SEPARATOR
MENUITEM "&New method", TEMP_NMETH
END
END

demoMenu MENU
BEGIN
MENUITEM "&Clear!", DEMO_CLEAR
POPUP "&Turtle"
BEGIN
MENUITEM "&Load Demo"”, DEMO_TURTLOAD
MENUITEM SEPARATOR

MENUITEM "&Pattern...", DEMO_FRACTAL
END

MENUITEM "T&rack!", DEMO_TRACLOAD
MENUITEM "C&ube!", DEMO_CUBELOAD
MENUITEM "&Graph!”, DEMO_GRAFLOAD
MENUITEM "&Fractal!", DEMO_FRACLOAD
POPUP "&Mandelbrot”

BEGIN

MENUITEM "Plot&1", DEMO_BRT1LOAD
MENUITEM "Plot&2", DEMO_BRT2LOAD
MENUITEM "Plot&3", DEMO_BRT3LOAD
END
MENUITEM "&Queens'", DEMO_QUENLOAD
MENUITEM "C&lassTree!", DEMO_TREELOAD

MENUITEM "&ActorLogo!", DEMO_LOGOLOAD
END

track MENU
BEGIN
POPUP "&Shape"
BEGIN

MENUITEM "&Clear” , IDDCLEAR
MENUITEM "&Ellipse” , IDDELLIPSE
MENUITEM "&Rectangle", IDDRECT
MENUITEM "&Star” , IDDSTAR

MENUITEM "&Triangle" , IDDTRIANGLE
END
END

78

EditMenu MENU
BEGIN
POPUP "&Edit"

BEGIN
MENUITEM "Cu&t", EDIT_CUT
MENUITEM "&Copy", EDIT_COPY
MENUITEM "&Paste”, EDIT_PASTE
MENUITEM "Cé&lear", EDIT_CLEAR
END

END

DebugMenu MENU
BEGIN
MENUITEM "&Accept!”, BR_ACCEPT
POPUP "&Edit"
BEGIN
MENUITEM "Cu&t", EDIT_CUT
MENUITEM "&Copy", EDIT_COPY
MENUITEM "&Paste", EDIT_PASTE
MENUITEM "C&lear”, EDIT_CLEAR
MENUITEM SEPARATOR
MENUITEM "Select &All", EDIT_SELALL
MENUITEM "&Reformat”, BR_REFORM
END
MENUITEM "&Doit!", INSP_DOIT
POPUP "&Inspect”
BEGIN
MENUITEM "&Temporary”, DBG_TEMP
MENUITEM "&Selection”, INSP_ISEL
END
POPUP "&Utlity"
BEGIN
MENUITEM "&Implementors”, WORK_IMP
MENUITEM "&Senders”, WORK_SYMSEND
MENUITEM "&Global References", WORK_GLOSEND
MENUITEM "&References”, WORK_SEND
END
MENUITEM "&Resume!", DBG_RES
END

InspMenu MENU

BEGIN
POPUP "&Edit"

79

BEGIN

MENUITEM "Cu&t\Shift+Del", EDIT_CUT
MENUITEM "&Copy\Ctrl+Ins", EDIT_COPY
MENUITEM "&Paste\tShift+Ins", EDIT_PASTE
MENUITEM "C&lear", EDIT_CLEAR

END

MENUITEM "&Doit!", INSP_DOIT
POPUP "&Inspect"
BEGIN
MENUITEM "&Variable", INSP_IVAR
MENUITEM "&Key", INSP_IKEY
MENUITEM "&Selection", INSP_ISEL
END
END

BrowMenu MENU

BEGIN

MENUITEM "&Accept!", BR_ACCEPT

POPUP "&Edit"
BEGIN
MENUITEM "Cu&t\tShift+Del", EDIT_CUT
MENUITEM "&Copy\Ctrl+Ins", EDIT_COPY
MENUITEM "&Paste\tShift+Ins", EDIT_PASTE
MENUITEM "C&lear", EDIT_CLEAR
MENUITEM SEPARATOR
MENUITEM "Select &AINCtri+A", EDIT_SELALL
MENUITEM "&ReformatCtrl+R"”, BR_REFORM
MENUITEM SEPARATOR
MENUITEM "D&elete Class”, BR_DELCL, grayed
MENUITEM "&Delete Method", BR_DELME, grayed
END

MENUITEM "&Doit!", INSP_DOIT
MENUITEM "&Inspect!"”, INSP_ISEL

POPUP "&Options”

BEGIN
MENUITEM "A&bout the class”, BR_CABOUT, Grayed
MENUITEM "&Make descendant”, BR_CDES, Grayed
MENUITEM SEPARATOR
MENUITEM "&Class methods", BR_CMETH
MENUITEM "&Object methods”, BR_OMETH
MENUITEM SEPARATOR

80

MENUITEM "&Alphabetical", BR_ALPH

MENUITEM "&Hierarchical", BR_HIER

MENUITEM SEPARATOR

MENUITEM "&ZoomEdit\Ctrl+Z", BR_ZOOM

MENUITEM "&Refresh Class List", BR_REFRCL
END

POPUP "&Utility"

BEGIN

MENUITEM "&Implementors”, WORK_IMP
MENUITEM "&Senders", WORK_SYMSEND
MENUITEM "&Global References", WORK_GLOSEND
MENUITEM "&References”, WORK_SEND

END

POPUP "&Templates"
BEGIN
MENUITEM "&do", TEMP_DO
MENUITEM "&if/then", TEMP_IF
MENUITEM "if/&else", TEMP_IFEL
MENUITEM "&block", TEMP_BLOCK
MENUITEM "&select/case”, TEMP_CASE
MENUITEM "&loop", TEMP_LOOP
MENUITEM SEPARATOR
MENUITEM "&New method", TEMP_NMETH
END
END

WorkMenu MENU
BEGIN
POPUP "&File"

BEGIN
MENUITEM "&Run...", WORK_RUN
MENUITEM "&Edit...", WORK_EDIT
MENUITEM "&Load...", WORK_LOAD
MENUITEM "&Snapshot”, WORK_SNAP
END

POPUP "&Edit"
BEGIN
MENUITEM "Cu&t\Shift+Del"”, EDIT_CUT
MENUITEM "&Copy\Ctri+Ins”, EDIT_COPY
MENUITEM "&Paste\tShift+Ins"”, EDIT_PASTE
MENUITEM "Cé&lear", EDIT_CLEAR

81

MENUITEM SEPARATOR
MENUITEM "Select &AINCul+A", EDIT_SELALL
END

MENUITEM "&Doit!", INSP_DOIT
MENUITEM "&lInspect!”, INSP_ISEL
MENUITEM "&Browse!", WORK_BROWSE
MENUITEM "&Cleanup!”, WORK_CLEAN
MENUITEM "&Show Room!", WORK_ROOM

POPUP "&Utility"
BEGIN
MENUITEM "&Implementors", WORK_IMP
MENUITEM "&Senders”, WORK_SYMSEND
MENUITEM "&Global References”, WORK_GLOSEND
MENUITEM "&References", WORK_SEND
MENUITEM SEPARATOR
MENUITEM "&Clear Display”, WORK_CLSDISP
END

POPUP "&Templates”
BEGIN
MENUITEM "&do", TEMP_DO
MENUITEM "&if/then”, TEMP_IF
MENUITEM "if/&else", TEMP_IFEL
MENUITEM "&block", TEMP_BLOCK
MENUITEM "&select/case”, TEMP_CASE
MENUITEM "&loop", TEMP_LOOP
END

MENUITEM "Demos!", WORK_DEMO

END

FileEditMenu MENU
BEGIN
POPUP "&File"

BEGIN
MENUITEM "&New", FILE_NEW
MENUITEM "&Open...", FILE_OPEN
MENUITEM "&lInsert File...", FILE_READ
MENUITEM "&Save", FILE_SAVE

MENUITEM "Save &As...", FILE_SAVEAS
END

POPUP "&Edit"
BEGIN
MENUITEM "Cu&\Shift+Del", EDIT_CUT
MENUITEM "&Copy\tCtrl+Ins", EDIT_COPY
MENUITEM "&Paste\tShift+Ins", EDIT_PASTE
MENUITEM "C&lear", EDIT_CLEAR
MENUITEM SEPARATOR
MENUITEM "Select & AINCirl+A", EDIT_SELALL
END
MENUITEM "&Doit!", INSP_DOIT
MENUITEM "&Inspect!", INSP_ISEL
END

83

APPENDIX B.ACTOR CODE FOR DMWINDOW CLASS

The following listings are the DMWindow class code that was either created or

modified for the implementation of this thesis.
/* GLAD Window for data manipulation interaction */!!

inheritMyWindow, #DMWindow, #(dbSchema /*meta data of opened db*/
prevObj /*previously selected
object if any */
selObj /*currently selected
object if any*/
colorTable /*available colors for
shading*/
rectSize /*width & height of object rectangle
expressed in Point*/
objMoved /*true if object is
dragged*/
prevCurPt /*previous cursor point
while object is dragged*/
boundRect /*bounding box that surrounds all objects.
used for scroll bars & setting windoworg*/
logOrg /*origin of logical coordinate,
mapped to device coord (0,0)*/
hScroll /*true if there is HScrollBar*/
vScroll /*true if there is VscrollBar*/
bDDEAcknowledge /* has DDE initiation
been acknowledged? */
mbdsDB /* Is the current DB an MBDS
database? */
hSockets /* Handle of Socket interface window */
haveData /* have the results of the retrieve come back? */
awaitingDaia /* Are we waiting for data from MBDS */
waitDialog /* Dialog box which shows while waiting for data */
dbName /* Name of the database */
qwin /* query window */), 2, nil)!!

now(DMWindowClass)!!

84

now(DMWindow)!!

/* comment */
Def returnQuery(self | win,aStr, aCommand)
{
aStr := formulateRetrieve(self);
aCommand := add Atom(self, IP(aStr));
Call PostMessage(hSockets, WM_DDE_REQUEST, hWnd, pack(CF_TEXT,
aCommand));

waitDialog := new(Dialog);
runModal(waitDialog, DATAWAIT, self);
haveData := "YES",;

if haveData = "YES"
win := new(ListMemWindow,self,"GladLMMenu","BROWSE:
"+name(selObj),nil);
addWindow(selObj,win);
start(win,selObj);
endif;
[

Def QueryMembers(self | queryDialog aStr aCommand win)

{
if not(selObj)
errorBox("ERROR!","No object is selected")
else
if mbdsDB

awaitingData := true;
queryDialog := new(InputDialog," Queries to
MBDS","Query:","FIRST@[");
if runModal(queryDialog,INPUT_BOX,ThePort)==IDOK
aStr:=getText(queryDialog)
endif;

aStr := "020"+ aStr;

aCommand := addAtom(self, IP(aStr));
Call PostMessage(hSockets, WM_DDE_REQUEST, hWnd, pack(CF_TEXT,

aCommand));

waitDialog := new(Dialog);

85

runModal(waitDialog, DATAWAIT, self);
else haveData := "YES";
endif;
if haveData = "YES"
win := new(ListMemWindow,self,"GladLMMenu","BROWSE:
"+name(selObj),nil);
addWindow(selObj,win);
start(win,selObj);
endif;
endif
} "

"

/*RetCommon queries into the database*/
Def gRetCommon(self)
{

errorBox("query Retrieve Common","")
'

/*Delete queries into the database*/
Def gDelete(self)

{
errorBox("query Delete","")

i

/*Update queries into the database*/
Def qUpdate(self)
{

errorBox("query Update","")

i

/*Insert queries into the database*/
Def glnsert(self)

{

errorBox("query Insert”,"")
N

/* Formulate a retrieve request to get selected MBDS object's data */
Def formulateRetrieve(self | aStr, attribs)

{
aStr := new(String, 100);

86

aStr := "020" + asUpperCase(dbName) + "@" + "[RETRIEVE(TEMP=" +
name(selObj) + ")(";
attribs := new(String, 50);
attribs := "";
do(attributes(selObj),
{ using(attr)
attribs := attribs + asUpperCase(attr{NAME]) + ",";
}
)
aStr := aStr + attribs + "&";
aStr := subString(aStr, 0, indexOf(aStr, '&', 0) - 1);
aStr :=aStr+ ")BY ";
aStr := aStr + subString(attribs, 0, indexOf(attribs, ',', 0)) + "1";
Aasciiz(aStr);
!

/* Tell MBDS to load the appropriate database */
Def loadMBDSDatabase(self, dbName ! aStr, aCommand)

{
aStr := delete(dbName, 0, 4);

aStr := leftJustify(aStr);
aStr := asUpperCase(rightJustify(aStr));
aStr := "010" + aStr;
aCommand := addAtom(self, 1P(asciiz(aStr)));
Call PostMessage(hSockets, WM_DDE_REQUEST, hWnd, pack(CF_TEXT,
aCommand));
13k

/* Handle Dynamic Data Exchange acknowledgments */
Def WM_DDE_ACK(self, wp, Ip | aServer, aTopic)
{
aServer := Call GlobalFindAtom(1P(asciiz("Sockets")));
aTopic := Call GlobalFindAtom(IP(asciiz("Database")));
deleteAtom(self, aServer);
deleteAtom(self, aTopic);
hSockets := wp;
bDDEAcknowledge := true;
I}

/* Get the latest data for a MBDS object */
Def getMembers(self | aStr aCommand)

{

aStr := formulateRetrieve(self);

87

aCommand := add Atom(self, IP(aStr));
Call PostMessage(hSockets, WM_DDE_REQUEST, hWnd, pack(CF_TEXT,
aCommand));
!

/* Handle Socket interfaces's WM_DDE_DATA messages here */
Def WM_DDE_DATAC(self, wp, 1p | mbdsCommand, aStr, objFile, delFile)
{

aStr := getAtom(self, high(lp));

deleteAtom(self, high(lp));

mbdsCommand := subString(aStr, 0, 3);

select

case mbdsCommand = "020"
objFile := new(File);
delFile := new(File);
setName(delFile, memberFile(selObj));
delete(delFile);
setName(objFile, "gresults.fil");
reName(objFile, memberFile(selObj));
setHaveMembers(selObj, true);
haveData := "YES";

if awaitingData
end(waitDialog, 0);
endif;
endCase;
default
haveData := "ERROR";
if awaitingData
end(waitDialog, 0);
endif;

errorBox("ERROR", delete(aStr, 0, 3));

endSelect;
j 3

/* Return the string that the atom references */
Def getAtom(self, atom | bufStr, aStr)

{
bufStr := new(String, 100);

Call GlobalGetAtomName(atom, 1P(bufStr), 100);
aStr := removeNulls(getText(bufStr));

88

freeHandle(bufStr);
AaStr
11}

/* Delete or decrease the count on an atom */
Def deleteAtom(self, param)
{
if ((param >= 0xC000) and (param <= OxFFFF))
ACall GlobalDelete Atom(param);
endif;
Anil
m

/* Create a new atom or increment the count of one that already exists */
Def addAtom(self, param)
{
ACall GlobalAddAtom(param);
freeHandle(param),
M

/* Initiate Dynamic Data Exchange with the Socket interface */
Def initDDE(self, reason | aServer, aTopic)
{
bDDEAcknowledge := false;
aServer := addAtom(self, IP(asciiz("Sockets")));
aTopic := addAtom(self, 1P(asciiz("Database")));
Call SendMessage(OxFFFFL, WM_DDE_INITIATE, hWnd, pack(aServer,

aTopic));

if not(bDDEAcknowledge)
if reason = "initDDE"
errorBox("ERROR","Unable to initiate DDE with the Socket Interface");
endif;
Malse;
else

Def reDraw(self, obj | hdc)

{
hdc := getContext(self);

setLPtoDP(self,hdc);
display(self,obj,hdc);

89

releaseContext(self,hdc)
peu

/*gets the filename from the name listed in the listbox*/
Def getGLADfilename(self ,selDbl tmpStr)
{
tmpStr := new(String,30);
tmpStr :="";
do(selDb, {using(elem)
ifelem< '
tmpStr ;= tmpStr + asString(elem)
endif });
AsubString (tmpStr,0,7) + ".sch”
} nonon

/*returns the currently selected object*/
Def selObj(self)
{
AselOb;j
3l

/* draws an object on the window using
the hdc display context */
Def display(self,obj,hdc | objName, objRect,
hBrush, hPen, hOldBrush, hOldPen)
{
eraseRect(self,obj,hdc); /*first erase it*/
[*select the color brush for filling
used with Rectangle (via draw) */
hBrush := Call CreateSolidBrush(color(obj));
/*set bkcolor for shading with DrawText*/
Call SetBkColor(hdc,color(obj));
hOldBrush := Call SelectObject(hdc,hBrush);
objRect := rect(obj);
if obj.thickBorder /*draw it with a thick border*/
hPen :=Call CreatePen(0,5,Call GetTextColor(hdc));
hOldPen:= Call SelectObject(hdc,hPen);
draw(objRect,hdc);
Call SelectObject(hdc,hOldPen);/ *restore the dc*/
Call DeleteObject(hPen)
else
draw(objRect,hdc) /*with a reg. border*/
endif;
if nesting(obj) /*draw the inner box if it is a nested object*/

draw(nestedRect(obj),hdc)
endif;

objName := name(obj);

Call DrawText(hdc,IP(objName),-1,0bjRect,
DT_CENTER bitOr DT_VCENTER
bitOr DT_SINGLELINE);

Call SelectObject(hdc,hOldBrush);

Call DeleteObject(hBrush);

freeHandle(objName)

} on

[*erase the region a little larger than object
rectangle in case it is displayed with a thick
border*/
Def eraseRect(self,obj,hdc | hBrush tmpRect)
{
tmpRect := copy(rect(obj));
hBrush := Call CreateSolidBrush(WHITE_COLOR);
Call FillRect(hdc,inflate(tmpRect,5,5),hBrush);
Call DeleteObject(hBrush)
Jon

/*clientRect for DMWindow ignores the scroll bars
if present*/
Def clientRect(self | cRect, incr)
{
cRect := clientRect(self:WindowsObject);
if hScroll
incr := Call GetSystemMetrics(3);/*SM_CYHSCROLL*/
setBottom(cRect, bottom(cRect)+incr-1)
endif;
if vScroll
incr := Call GetSystemMetrics(2);/*SM_CXVSCROLL*/
setRight(cRect, right(cRect)+incr-1)
endif;
AcRect
}n

/*move vert scroll bar down for incr amount*/
Def moveDownVScroll(self, incr | newy)

{

newy := min(y(logOrg) + incr,

91

bottom(boundRect) - height(clientRect(self)));
/*adjust newy so it won't go beyond boundRect*/
setLogOrg(self,x(logOrg),newy);
setScrollPos(self,SB_VERT,newy);
repaint(self)
} o

/*move vert scroll bar up for incr amount*/

Def moveUpVScroll(self, incr | newy)

{

/*adjust newy so it won't go beyond boundRect*/
newy := max(y(logOrg) - incr,top(boundRect));
setLogOrg(self,x(logOrg),newy);
setScrollPos(self,SB_VERT,newy);
repaint(self)

}

"

/*check if any of four constraints is violated
if so adust accordingly */
Def checkForViolation(self | cRect)
{
cRect := clientRect(self);
if (x(logOrg)+right(cRect)) > right(boundRect)
logOrg.x := max(left(boundRect),
right(boundRect)-right(cRect));
setRight(boundRect, max(x(logOrg)+right(cRect),
right(boundRect)))
endif;

if (y(logOrg)+bottom(cRect)) > bottom(boundRect)
logOrg.y := max(top(boundRect),
bottom(boundRect)-bottom(cRect));
setBottom(boundRect,max(y(logOrg)+bottom(cRect),
bottom(boundRect)))
endif;

if x(logOrg) < left(boundRect)
setLeft(boundRect, min(left(boundRect),
right(boundRect)-right(cRect)));
logOrg.x := left(boundRect)

endif;

92

if y(logOrg) < top(boundRect)
setTop(boundRect, min(top(boundRect),
bottom(boundRect)-bottom(cRect)));
logOrg.y := top(boundRect)
endif
}n

/*clientRect has changed. process only if the
change is not by the changes in scroll
bars, i.e. window size really changed */
Def reSize(self,wp,lp)
{
adjBoundRect(self);/*always be adjusted*/
setScrollRanges(self);
repaint(self)

} "

/*move horz scroll bar right for incr amount*/

Def moveRightHScroll(self, incr | newx)

{
newx := min(x(logOrg) + incr,

right(boundRect)-width(clientRect(self)));

/*adjust newx so it won't go beyond boundRect*/
setLogOrg(self,newx,y(logOrg));
setScrollPos(self,SB_HORZ newx);
repaint(self)

}

"

/*move horz scroll bar left for incr amount*/

Def moveLeftHScroll(self, incr | newx)

{
newx := max(x(logOrg) - incr,left(boundRect));
/*adjust newx so it won't go beyond boundRect*/
setLogOrg(self,newx,y(logOrg));
setScrollPos(self, SB_HORZ, newx);
repaint(self)

"

Def hThumbPos(self, Ip | newx)

93

{
newx := asint(lp);
setl.ogOrg(self,newx,y(logOrg));
setScrollPos(self,SB_HORZ newx);
repaint(self)

}

Def vThumbPos(self, Ip | newy)

{
newy := aslnt(lp);
setlogOrg(self,x(logOrg),newy);
setScrollPos(self, SB_VERT,newy);

repaint(self)
| IRA

Def downPage(self,ip)

{
moveDownV Scroll(self,height(clientRect(self)))

j "

Def upPage(self,lp)
{
moveUpVScroll(self,height(clientRect(self)))

U

Def rightPage(self,lp)

{
moveRightHScroll(self,width(clientRect(self)))

} "

Def leftPage(self,lp)

{
moveLeftHScroll(self,width(clientRect(self)))
)"

Def rightArrow(self,lp)
{
moveRightHScroll(self,asInt(0.25*x(rectSize)))
}on
Def downAmow(self,Ip)
{

moveDownVScroll(self,asInt(0.5*y(rectSize)))

94

) !

Def upArrow(self,lp)

{
moveUpVScroll(self,asInt(0.5*y(rectSize)))

pu

Def leftArrow(self,lp)

{
moveLeftHScroll(self,asInt(0.25*x(rectSize)))

)} u

/*convert device pt (DP) to logical pt (LP)*/
Def dPtoLP(self,aPt)
{

Apoint(aPt.x + logOrg.x, aPt.y + logOrg.y)
)i

/*set the logical coord. origin*/

Def setLogOrg(self,x,y)
{
logOrg.x := x;
logOrg.y :=y

!

/*1ogOrg is now mapped to device coord. (0,0)*/
/*need to pass hdc since there could be two disp context
allocated to this window at one time */
Def setLPtoDP(self, hdc)
{

Call SetWindowOrg(hdc,x(logOrg),y(logOrg))
]

Def setScrollRanges(self | xmin,ymin,xmax,ymax)
{
xmin:=left(boundRect);
ymin:=top(boundRect);
cRect := clientRect(self);
if (xmax:=right(boundRect)-width(cRect)) < xmin
Xmax := xmin
endif;
if (ymax:=bottom(boundRect)-height(cRect)) < ymin

ymax := ymin

95

endif;

hScroll := xmin < xmax;

vScroll := ymin < ymax;

setScrollRange(self,SB_HORZ,xmin,xmax);

setScrollRange(self,SB_VERT,ymin,ymax)
}u

Def adjBoundRect(self ItmpRect)
{
tmpRect:=copy(boundRect);
boundRect:=copy(rect(first(dbSchema)));
do(dbSchema,
{using(obj | objRect)
objRect := rect(obj);
setTop (boundRect,min(top(objRect),top(boundRect)));
setLeft (boundRect,min(left(objRect),left(boundRect)));
setBottom(boundRect,max(bottom(objRect),bottom(boundRect)));
setRight (boundRect,max(right(objRect),right(boundRect)));
R
/*changes boundRect accordingly per violation*/
checkForViolation(self);
if tmpRect = boundRect
Anil
endif
)N

Def start(self, databaseName | dosFilename, DDElnitiated)
{
dbName := databaseName;
mbdsDB := false;
if subString(dbName, 0, 4) = "MBDS"
mbdsDB := true;
if not(initDDE(self, "socketActive?"))
exec("sockets.exe™);
endif;
if (DDElInitiated := initDDE(self, "initDDE"))
loadMBDSDatabase(self, dbName);
dbName := delete(dbName, 0, 5);
endif;
endif;
if not(mbdsDB) or DDElInitiated
dosFilename := getGLADfilename(self,dbName);
loadSchema(self, dosFilename);
adjBoundRect(self);

96

setLogOrg(self, /*center of bRect to center of cRect*/
left(boundRect)+asInt(0.5*(width(boundRect)-width(clientRect(self)))),
top(boundRect)+asInt(0.5*(height(boundRect)-height(clientRect(self)))));
setScrollRanges(self);
setScrollPos(self,SB_HORZ x(logOrg));
setScrollPos(self SB_VERT,y(logOrg));
show(self,1);
endif;
} 1"

/*set the width and height of object rectangle*/
Def setObjRectSize(self | tm, wd, ht)
{
tm := new(Struct,32);
Call GetTextMetrics(hDC:=Call GetDC(hWnd),tm);
wd:= 14*asInt(wordAt(tm,10));
ht:= 4*asInt(wordAt(tm, 0));
rectSize := point(wd,ht);
Call ReleaseDC(hWnd,hDC)
}on

/*mouse is dragged while left button is pressed.
move obj if mouse is in it */
Def mouseMoveWithLBDn(self,wp,point | aLPt)
{
if selObj
objMoved := true;
eraseRect(self,selObj,hDC);
alLPt:= dPtoLP(self,point); /*convert to DP to LP*/
setNewRect(selObj,aLPt,prevCurPt);
prevCurPt:= al_Pt;
display(self,selObj,hDC)
endif
} "

Def initMenulD(self)
{
menulD := %Dictionary(1->#describe
2->#expand
3->#listMembers
4->#oneMember

5->#addMember
6->#deleteMember

97

7->#modifyMember
8->#query
9->#showConnection
950->#help
11->#close
2]->#describe
22->#glnsert
23->#gRedieve
24->#qUpdate
25->#gDelete
26->#gRetCommon)

Def showConnection(self | aConnWin)
{

errorBox("Show Connection","")
)} n

Def expand(self Iwin)
{
if not(selObj)
errorBox("ERROR!","No Object is selected™)
else
if not(nesting(selObj))
errorBox("ERROR!","Selected Object is not a nested object”)
else
win := new(NestDMWindow,self,"GladDMIMenu",
"SubClasses of: "+name(selObj" nil);
addWindow(selObj,win);
start(win,selObj,colorTable)
endif
endif
)"

/*open oneMemWin for the selected object*/
Def oneMember(self | oneMemWin, gotMembers)

{
if not(selObj)

errorBox("ERROR", "No Object Selected")

else
if mbdsDB and not(haveMembers(selObj))

98

getMembers(self);
awaitingData := true;
waitDialog := new(Dialog);
runModal(waitDialog, DATAWALIT, self);

else haveData := "YES";

endif;

if haveData = "YES"
onecMemWin := new(DisplayOneWindow,self,"GladOMMenu",

"DISPLAY: "+name(selObj),nil);

addWindow(selObj,oneMemWin);
start(oneMemWin,selObj,0);

endif;

endif
}

"

/*count the number of the describe window opened*/
Def countOpnDscrbWin(self)
{

Asize(extract(dbSchema,{ using(obj) obj.aDscrbWin}))
[3)

j /*initialize the color table. this method

is called from the new method*/

Def init(self)

{
colorTable := new(ColorTable,10);
set(colorTable);
logOrg :=0@0; /*need dummy assigment,so initial call

to checkForViolation via reSize works*/

boundRect:=new(Rect);
setObjRectSize(self);
init(self:MyWindow)

} "

Def rButtonRelease(self,wp,point | tmpQbyj)
{
if (tmpObj := objSelected(self,dPtoLP(self,point)))
/*an object is clicked with rbutton*/
if tmpObj <> selObj

if color(tmpObj) == WHITE_COLOR

errorBox("Wrong Button??",
"Use LEFT button to select an object”)

clse
errorBox("ERR OR",
"RIGHT button clicked object is not"+CR_LF+
"the selected (bold-lined) object”)
endif
else /* = selObj */
closeOpenWindows(selObj);
if not(referenced(selObj))
[*unshade it if not referenced by other objects*/
avail(colorTable,color(selObj));
setColor(selObj, WHITE_COLOR)
endif;
/*now unselect it*/
regBorder(selObj);
hDC := getContext(self);
setL.PtoDP(self,hDC);
display(self,selObj,hDC);
releaseContext(self,hDC);
selObj := nil
endif
endif
} "

/*list the members (ie instances) of the
selected object*/
Def listMem bers(self | win, gotMembers)
{
if not(selObj)
errorBox("ERROR!","No object is selected™)
else
if mbdsDB and not(haveMembers(selObj))
getMembers(self);
awaitingData := true;
waitDialog := new(Dialog);
runModal(waitDialog, DATAWAIT, self);
else haveData := "YES",;
endif;
if haveData = "YES"

win := new(ListMemWindow,self,"GladLMMenu","BROWSE:

"+name(selObj),nil);
addWindow(selObj,win);

start(win,selOb;j);
endif;

100

endif
} 1

/*queries the database*/
Def query(selfl db so aStr qwin win aCommand)
{
if not(selObj)
errorBox("ERROR", "No Object Selected")
else
if mbdsDB
awaitingData := true;
so:= new(String, 50);
db:= new(String, 50);
so:= name(selObj);
db:= asUpperCase(dbName);
gwin := new(QueryWindow,self,"QueryGlad",
"Glad to MBDS Queries OF: "+name(selObj),nil);

start(qwin,db,so,hSockets,selObj,self);

/* aStr := formulateRetrieve(self);

aCommand := addAtom(self, IP(aStr));

Call PostMessage(hSockets, WM_DDE_REQUEST, hWnd, pack(CF_TEXT,
aCommand));

waitDialog := new(Dialog);
runModal(waitDialog, DATAWAIT, self);
else haveData := "YES";*/
endif;
/* if haveData = "YES"
win := new(ListMemWindow,self,"GladLMMenu","BROWSE:
"+name(selObj),nil);
addWindow(selObj,win);
start(win,selObj);
endif;*/
endif
} "

Def help(selflaStr)
{aStr :=asciiz("Data Manipulation Window");

pcall(Lib.procs[#GUIDANCESETCONTEXT],HGuide,
IP(aStr),1);

101

freeHandle(aStr);
}un

/*describe the structure of the selected object*/
Def describe(self | describeWin)
{

if not(selObj)
errorBox("ERROR", "No Object Selected"”)

else
describeWin := new(DescribeWindow,self,nil,

"STRUCTURE OF: "+name(selObj),nil);
addWindow(selObj,describeWin);
start(describeWin,selObj)

endif;
} "

/*1eft button is released*/
Def 1ButtonRelease(self,wp,point| aL.Pt)

{

select
case selObj and not(objMoved)

/*an object was not moved, so select it*/

is
if prevObj /*unbold the bolded border*/

regBorder(prevObj);
/*unshade it if has no opened windows

and not referenced by other objects*/
if not(anyOpenWindow(prevObj) or referenced(prevObj))

avail(colorTable,color(prevObj));
setColor(prevObj, WHITE_COLOR)
endif;
display(self,prevObj,hDC)

endif;
if color(selObj) = WHITE_COLOR
/*not referenced in another's describe window,

$O assign it a color*/
setColor(selObj,nextBrushColor(colorTable))

endif;
thickBorder(selObj);
display(self,selObj,hDC)

endCase

case selObj and objMoved
/*an object was just moved, so don't select it*/

102

/*adjust boundRect and scroll bars accordingly*/
is
display(self,selObj,hDC);
selObj := prevObj;
if adjBoundRect(self)
setScrollRanges(self);
setScrollPos(self,SB_HORZ,x(logOrg));/*need these when*/
setScrollPos(self SB_VERT,y(logOrg));/*bars reappear*/
repaint(self)
endif
endCase
endSelect;
releaseContext(self,hDC)
} 1"

/*left button is pressed; check if the cursor is within
the object rectangle. If yes get ready to move or
select it*/
Def 1ButtonDown(self,wp,point | aLPt)
{
objMoved := nil;
if selObj
/*remember it if some object is currently selected*/
prevOb;j := selObj

endif;

alLPt:= dPtoLP(self,point);

if (selObj := objSelected(self,al.Pt))
prevCurPt := al.Pt

endif;

hDC := getContext(self);

setLPtoDP(self,hDC)

} "

/*detects whether the cursor is in the object rect*/
Def objSelected(self,cursorPt)
{
do (dbSchema, { using(obj)
if containedIn(obj,cursorPt)
Aobj /*return the selected obj*/
endif });
Anil
joon

/*draws the diagram. called by the show method

103

via update method which sends WM_PAINT */
Def paint(self,hdc)
{

setLPtoDP(self,hdc);

do (dbSchema, {using(obj) display(self,obj,hdc)})
} N

/*gets the meta data of db to be opened,
initialize other instance variables*/
Def loadSchema(self, aSchemaFile | aFile, anObj)
{
aFile := new(TextFile);
setName(aFile,aSchemaFile);
open(aFile,0); /*read-only*/
dbSchema := new(OrderedCollection,10);
anObj := new(GladObj);
loop
while get(anObj,aFile,rectSize)
add(dbSchema,anObj);
anObj := new(GladObj)
endLoop;
close(aFile)
} "

Def addMember(self)
{

errorBox("add member","")

P!

Def deleteMember(self)
{

errorBox("delete member","")
| R

Def modifyMember(self)

{
errorBox("modify member","")
B3

104

APPENDIX C. ACTOR CODE FOR QUERYWINDOW CLASS

The following listings are the QueryWindow class code that was either created or

modified for the implementation of this thesis.
/* GLAD Window for ABDL queries to backend MBDS */!!

inherit(EditWindow, #QueryWindow, #(menulD /* menu idenities */
dbName /* database name */

selObjName /* selected object */

mbdsDB /* Is current DB an MDBS database */

boundRect/* */

logOrg /* */

hSockets /* handle of Socket interface window */

haveData /* have the results of the query come back */
awaitingData /* Are we waiting for data from MBDS */
waitDialog /*Dialog box which shows while waiting for data */
mbdsDB /* is the current DB an MBDS database */
bDDEAcknowledge /*has DDE initiation been acknowledged? */
selObj /* the selected object */

parentWin /* parent window DMWindow */

retquery /* is the query a retrieve */

ResultWin /* textwindow for retrieve results */

members/* */

TW/* is the template window */), 2, nil)!!

now(QueryWindowClass)!!
now(QueryWindow)!!

/* comment */

Def Help(self)

{

errorBox("Help",
"This program demonstrates simple ABDL" + CR_LF +
"queries to a MBDS back-end" + CR_LF +
"For a example of each type of query," + CR_LF +
"look under the template's menu item" + CR_LF +
"and select the specific query.");

105

L

[*Delete queries into the database*/
Def tDelete(self)
{

TW := new(TextWindow,ThePort,nil,

"Format for an DELETE Query",&(20,20,400,100));
show(TW,1);

drawString(TW,"dbName@ [DELETE((TEMP=selObj) and");
col(TW);

drawString(TW, " (Attrl = jones))]");

setFocus(self);

pn

/*Update queries into the database*/
Def tUpdate(self)
{

TW := new(TextWindow, ThePort,nil,

"Format for an Update Query",&(20,20,400,100));

show(TW, 1);

drawString(TW,"dbName@ [UPDATE((TEMP=selObj) and");

eol(TW);
drawString(TW," (Attrl = jones)) <RANK = ENS>]");

setFocus(self);

!

/*Retrieve queries into the database*/
Def tRetrieve(self)
{

TW:= new(TextWindow,ThePort,nil,
"Format for an RETRIEVE Query",&(20,20,400,150));

show(TW,1);
printString(TW,"dbName@[RETRIEVE((TEMP=selObjA)");

eol(TW);
printString(TW," and (Attr]l = jones))");

106

eol(TW);
printString(TW," (Attr1,Attr2,Attr3..)]");
setFocus(self);

M

/*RetCommon queries into the database*/
Def tRetCommon(self)
{

TW := new(TextWindow,ThePort,nil,

"Format for an RETRIEVE COMMON Query",&(20,20,400,150));
show(TW,1);

printString(TW,"dbName@ [RETRIEVE(TEMP=selObjA)(AttrA1,AttrA2,..)");
eol(TW),

printString(TW," COMMON (AtrA1,AttrB1)");

eol(TW);

printString(TW," RETRIEVE(TEMP= selObjB)(AtrB1,AttrB2,..)]");
setFocus(self);

J i

[*Insert queries into the database*/
Dc¢f tInsert(self)
{

TW := new(TextWindow,ThePort,nil,
"Format for an INSERT Query",&(20,20,400,100));
show(TW, 1);

drawString(TW,"dbName@ [INSERT(<TEMP,selObj>,");
eol(TW);
drawString(TW," <Attrl,jones>,<Attr2,LT>)]");

setFocus(self);

y !

107

/* Read the file named qwresult.dat and And show query results for retrieves*/

Def RetResult(selfl f, line)

{
break(self);

f := new(TextFile);

f.delimiter := CR_LF; /* use our delimiter */
setName(f, "qwresult.dat");

open(f, 0); /* read only */
checkError(f); /* any errors? */
initWorkText(self); /* clear the old text */
showWaitCurs(); /* looping takes a while */
loop

while line := readL.ine(f)
printString(ResultWin,line);

eol(ResultWin);

/¥ add(workText, line);*/

endLoop;

showOldCurs(); /* all done */
close(f);

checkError(f); /* justin case */
invalidate(self); /* redraw the screen */

}

..

/* comment */
Def formulateQuery(selflaStr)

{

aStr :=new(String,150);
selectAll(self);
xCopy(self);

aStr:="";
aStr:=getClipText(self);

deleteSelText(self);
Aasciiz(aStr);

!

108

/* get the attributes from DMwindow for selobj */
Def describe(self)
{
. describe(parentWin);
3}

/*list the members (ie instances) of the
selected object*/

Def listMembers(self | win, gotMembers)

{

queryMembers(self);

awaitingData := true;

waitDialog := new(Dialog);
runModal(waitDialog, DATAWAIT, self);
haveData := "YES";

if haveData = "YES"

if not(retquery)
returnQuery(parentWin);
else
ResultWin:= new(TextWindow, ThePort,nil,
"RESULTS of a Retrieve Query",nil);
show(ResultWin, 1);

RetResult(self);
endif;

endif;
} "

/* Delete or decrease the count on an atom */
Def deleteAtom(self, param)
{
if ((param >= 0xC000) and (param <= OxFFFF))
ACall GlobalDelete Atom(param);

endif;

Anil

!

109

/* Return the string that the atom references */

Def getAtom(self, atom | bufStr, aStr)

{
bufStr := new(String, 200);
Call GlobalGetAtomName(atom, IP(bufStr), 200);
aStr := removeNulls(getText(bufStr));
freeHandle(bufStr);
AaStr

i

/* Handle Socket interfaces's WM_DDE_DATA messages here */
Def WM_DDE_DATA(self, wp, Ip | mbdsCommand, aStr, objFile, delFile)
{

aStr := getAtom(self, high(p));

deleteAtom(self, high(lp));

mbdsCommand := subString(aStr, 0, 3);

select

case mbdsCommand = "020"
objFile := new(File);
delFile := new(File);
setName(delFile, "qwresult.dat");
delete(delFile);

setName(objFile, "qresults.fil");
reName(objFile, "qwresult.dat");
setHaveMembers(selObjName,false);
haveData := "YES";

if awaitingData
end(waitDialog, 0);
endif;
endCase;
default
haveData := "ERROR";
if awaitingData
end(waitDialog, 0);
endif;

errorBox("ERROR", delete(aStr, 0, 3));

endSelect;
1!

110

/* Create a new atom or increment the count of one that already exists */
Def addAtom(self, param ltempAtom)
{

tempAtom:=Call GlobalAdd Atom(param);

AtempAtom;
1

/* Get the latest data for a MBDS object */

Def queryMembers(self | aStr aCommand)
{

aStr :=formulateQuery(self);
aCommand := addAtom(self, IP(aStr));

Call PostMessage(hSockets, WM_DDE_REQUEST, hWnd, pack(CF_TEXT,
aCommand));

!

Def start(self, gqdbName, gselObj, handSocket,selObject,P'Window)
{

initMenulID(self);
show(self,1);
hSockets := handSocket;
selObjName:=selObject;
dbName := gdbName;
selObj := qselObj;
parentWin :=PWindow;
retquery:=false;

} "

/*RetCommon queries into the database*/
Def qRetCommon(selfl aStr,Rtc, attribs)

{
retquery:=true;

aStr:= new(String, 150);
aStr:="020"+dbName+"@[RETRIEVE(TEMP="+selObj+")()";

aStr:=aStr+"COMMON(,)RETRIEVE(TEMP=)()] ",

111

drawString(self,aStr);

|

[*Retrieve queries into the database*/

Def qRetrieve(selfl aStr,Ret, attribs)

{
retquery:=true;
aStr:= new(String, 150);
aStr:="020"+dbName+"@[RETRIEVE(TEMP="+selObj+")(";
aStr:=aStr+")]";
drawString(self,aStr);

H!

/*Update queries into the database*/

Def qUpdate(selfl aStr, Upd, attribs)

{
retquery:=false;
aStr:= new(String, 150);
aStr:="020"+dbName+"@[UPDATE((TEMP= "+selObj+")",
aStr:=aStr+"and (=)< = >]";
drawString(self,aStr);
"

Def command(self,wp,lp)
{/*only interprets the menu choice now*/
if menuID[wp] and high(lp) = 1
perform(self,menulD[wp]));
else
if menuID[wp]
perform(self,menulD[wp])
else command(self:EditWindow, wp, Ip)
endif;

endif;
I

/*Insert queries into the database*/

112

Def glnsert(selfl aStr)

{
retquery:=false;
aStr:= new(String, 150);
aStr:="020"+dbName+"@[INSERT(<TEMP,"+selObj+">,<";
aStr := aSt. + "ENAME, Nardi>,<EPHONE x5555>)] ";
drawString(self,aStr);

P

/*Delete queries into the database*/

Def qDelete(selfl aStr)

{
retquery:=false;
aStr:= new(String, 150);
aStr:="020"+dbName+"@[DELETE((TEMP= "+selObj+")";
aStr:=aSa+"and ()] ";
drawString(self,aStr);

j !

Def initMenuID(self)
. {

menulD := %Dictionary(
10->#Help
11->#close
12->#describe
21->#listMembers
22->#qlnsert
23->#gRetrieve
24->#qUpdate
25->#qDelete
26->#gRetCommon
32->#tInsert ‘
33->#tRetrieve
34->#tUpdate
35->#tDelete
36->#tRetCommon)

113

10.

1.

12.

13.

LIST OF REFERENCES

Ruff, D., LCdr, USN, from:"The Advent of the Paperless Ship," Naval Engineers
Journal, July 1988.

Duff, C., and others, Actor Language Manual, The Whitewater Group, Inc.,
1989.

Newburger, B. , and others, "Introduction to Object-Oriented Programming", The
Whitewater Group, Inc., 1989.

Duff, C., and others, Actor Training Course Manual, The Whitewater
Group, Inc., 1988.

Jamsa, K., Windows Programming Secrets, Osborne McGraw-Hill, 1987.
Microsoft Corporation, Microsoft Windows User's Guide, Microsoft Press, 1987.

Wu, C.T. , Object-Oriented Programming through Actor, The Whitewater Group,
Inc., in progress.

Zawis, J.A. , Accessing Hierarchical databases via SQL Transactions in a
Multi-Model Database System, Masters Thesis, Naval Postgraduate School,
Monterey, California, December 1987.

Emdi, B., The Implementation of a Network Codasyl-DML Interface for the
Mulii-Lingual database System, Masters Thesis, Naval Postgraduate School,
Monterey, California, December 198S.

Wong, A., Toward highly Portable Database System , Masters Thesis, Naval
Postgraduate School, Monterey, California, June 1986.

Hogan, T. R. ,Interconnection of the Graphics Language for Database System to
the Multi-Lingual, Multi-Model, Multi-Backend Database System Over an
Ethernet Network, Masters Thesis, Naval Postgraduate School, Monterey,
California, December 1989.

Naval Postgraduate School Technical Report NPS52-88-050, Implementation of
Visual Database Interface Using an Object-Oriented Language, by C. T. Wu and
D. K. Hsiao, June 1988.

Fore, H. R., Prototyping Visual Interface for Maintenance and Supply Databases,
Masters Thesis, Naval Postgraduate School, Monterey, California, June 1989.

114

3

14. Williamson, M. L., An Implemenzation of a Data Definition Facility for the
Graphics Language for Database, Masters Thesis, Naval Postgraduate School,
Monterey, California, December 1988.

115

INITIAL DISTRIBUTION LIST

. Defense Technical Information Center

Cameron Station
Alexandria, Virginia 22304-6145

. Dudley Knox Library

Code 0142

Naval Postgraduate School
Monterey, California 93943-5002

. Office of Reasearch Adiministration

Code 012
Naval Postgraduate School
Monterey, California 93943-5002

. Chairman, Computer Science Dept.
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5002

. Chief of Naval Research

800 N. Quincy Street
Arlington, Virginia 22217-5000

. Center for Naval Analyses
4401 Ford Avenue
Arlington, Virginia 22302-0268

. Naval Ocean Systems Center
271 Catalina Boulevard
San Diego, California 92152

. Curriculum Officer

Computer Technology Program, code 37
Monterey, California 93943-5000

116

Number Copies
2

DAL

9.

10.

11.

12.

13.

Professor C. Thomas Wu (Code 52Wq)
Computer Science Department

Naval Postgraduate School

Monterey, California 93943-5000

Maria M. Jamini-Ramirez
Division Head

MDS Division

Data Systems Department

Naval Weapons Station
Concord, California 94520-5000

Robert Calogero

Director SEA CEL-PA

Logistics Policy and Appraisal Division
Naval Sea Systems Command
Washington, D. C. 20362-5101

Clifford G. Geiger

Deputy Chief Engineer - Logistics
Naval Sea Systems Command
Washington, D. C. 20362-5101

LT. William G. A. Sympson

8B Sellers Road
Annapolis, Maryland 21402

117

25

